Đề Xuất 5/2022 # Bai Tap Co Loi Giai Xac Suat Thong Ke # Top Like

Xem 14,949

Cập nhật nội dung chi tiết về Bai Tap Co Loi Giai Xac Suat Thong Ke mới nhất ngày 23/05/2022 trên website Expressrotaryhotpot.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 14,949 lượt xem.

--- Bài mới hơn ---

  • Bài Tập Về Cl Lò Xo + Giải Bt Ve Con Lac Lo Xo Doc
  • Giải Bài Tập Vbt Sinh Học 8 Bài 22
  • Giải Vbt Sinh Học 8 Bài 42: Vệ Sinh Da
  • Giải Vbt Sinh Học 8 Bài 32: Chuyển Hóa
  • Giải Vbt Sinh Học 8 Bài 39: Bài Tiết Nước Tiểu
  • Published on

    1. 1. NGUYỄN VĂN THÌN 9/2011 BÀI TẬP XÁC SUẤT VÀ THỐNG KÊ TOÁN
    2. 3. MỤC LỤC 3 6.3 Tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7 Kiểm định giả thuyết thống kê 39 7.1 So sánh kì vọng với một số cho trước . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2 So sánh hai kì vọng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 So sánh tỉ lệ với một số cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.4 So sánh hai tỉ lệ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 II BÀI GIẢI 46
    3. 4. Phần I BÀI TẬP
    4. 5. Chương 1 Tập hợp – Giải tích tổ hợp 1.1 Tập hợp Bài tập 1.1. Cho dãy tập hợp A1, A2, . . . , An, . . .. Chứng minh rằng luôn luôn tồn tại dãy tập hợp B1, B2, . . . , Bn, . . ., sao cho: (a) Các Bi từng đôi một rời nhau; (b) ∞ i=1 Ai = ∞ k=1 Bk. Bài tập 1.2. Chứng minh rằng các hệ thức sau đây tương đương nếu A và B là tập hợp con của Ω: A ∪ B = Ω, A ⊂ B, B ⊂ A. Bài tập 1.3. Khẳng định cho rằng nếu A, B, C là tập hợp con của tập hợp Ω sao cho A ⊂ B ∪ C và B ⊂ A ∪ C, thì B = ∅, có đúng không? Bài tập 1.4. Chứng minh rằng nếu A, B, C là các tập hợp con của tập hợp Ω, sao cho A ∩ B ⊂ C và A ∪ C ⊂ B, thì A ∩ C = ∅ Bài tập 1.5. Tìm biểu thức đơn giản của các biểu thức sau: (a) (A ∪ B)(A ∪ C) (b) (A ∪ B)(A ∪ B); (c) (A ∪ B)(A ∪ B)(A ∪ B) (d) (A ∪ B)(A ∪ B)(A ∪ B)
    5. 6. 1.2 Giải tích tổ hợp 2 (e) (A ∪ B)(B ∪ C) Bài tập 1.6. Hệ thức nào trong các hệ thức sau đây đúng (a) A ∪ B ∪ C = A ∪ (B AB) ∪ (C AC) (b) A ∪ B = (A AB) ∪ B (c) (A ∪ B) A = B (d) (A ∪ B) C = A ∪ (B C) (e) ABC = AB(C ∪ B) (f) AB ∪ BC ∪ CA ⊃ ABC (g) (AB ∪ BC ∪ CA) ⊂ (A ∪ B ∪ C) (h) ABC ⊂ A ∪ B (i) A ∪ BC = AC ∪ BC (j) A ∪ BC = C (C(A ∪ B)) Bài tập 1.7. Chứng minh rằng: (a) A ∪ B ∪ A ∪ B = A (b) (A ∪ B)AB = AB ∪ BA Bài tập 1.8. Chứng minh (a) Nếu A ∪ B = AB thì A = B (b) A ∪ BC ⊃ (A ∪ B)C (c) Nếu A1 ⊂ A, B1 ⊂ B và A ∩ B = ∅ thì A1 ∩ B1 = ∅ 1.2 Giải tích tổ hợp Bài tập 1.9. Một lô hàng có 50 sản phẩm. (a) Có bao nhiêu cách chọn ngẫu nhiên cùng lúc 5 sản phẩm để kiểm tra? (b) Có bao nhiêu cách chọn ngẫu nhiên lần lượt 5 sản phẩm? Bài tập 1.10. Trong một hệ thống điện thoại nội bộ 3 số
    6. 7. 1.2 Giải tích tổ hợp 3 (a) có bao nhiêu máy có các chữ số khác nhau? (b) Có bao nhiêu máy có số 9 ở cuối còn các chữ số còn lại đều khác nhau? Bài tập 1.11. Một lớp học có 40 học sinh gồm 20 nam và 20 nữ. Có bao nhiêu cách chia để trong mỗi nửa lớp có 10 nam sinh và 10 nữ sinh? Bài tập 1.12. Nếu một người có 6 đôi vớ khác nhau và 4 đôi giày khác nhau. Có bao nhiêu cách kết hợp giữa vớ và giày? Bài tập 1.13. Năm người A, B, C, D, E sẽ phát biểu trong một hội nghị. Có bao nhiêu cách sắp xếp để: (a) Người B phát biểu sau A. (b) Người A phát biểu xong thì đến lượt B. Bài tập 1.14. Có 6 học sinh được sắp xếp ngồi vào 6 chỗ đã ghi số thứ tự trên một bàn dài. Tìm số cách xếp (a) 6 học sinh vào bàn. (b) 6 học sinh này vào bàn sao cho 2 học sinh A, B ngồi cạnh nhau. (c) 6 học sinh này ngồi vào bàn sao cho 2 học sinh A, B không ngồi cạnh nhau. Bài tập 1.15. Một lớp có 40 học sinh. Giáo viên chủ nhiệm muốn chọn ra một ban cán sự lớp: 1 lớp trưởng, 1 lớp phó, 1 thủ quỹ. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn ban cán sự lớp? Bài tập 1.16. Một hộp có 8 bi đỏ, 6 bi trắng, 4 bi vàng. Người ta chọn ra 6 bi từ hộp đó. Hỏi có bao nhiêu cách chọn nếu: (a) Không yêu cầu gì thêm. (b) Phải có 2 bi đỏ, 2 bi trắng, 2 bi vàng. (c) Có đúng 2 bi vàng. Bài tập 1.17. Một đồn cảnh sát khu vực có 9 người. Trong ngày cần cử 3 người làm nhiệm vụ ở địa điểm A, 2 người ở địa điểm B còn 4 người trực tại đồn. Hỏi có bao nhiêu cách phân công? Bài tập 1.18. Một tổ sản xuất có 12 người, trong đó có 4 nữ, cần chia thành 4 nhóm đều nhau. Hãy tìm số cách phân chia sao cho mỗi nhóm có 1 nữ? Bài tập 1.19. Xếp 12 hành khách lên 4 toa tàu. Tìm số cách sắp xếp: (a) Mỗi toa có 3 hành khách.
    7. 8. 1.2 Giải tích tổ hợp 4 (b) Một toa có 6 hành khách, một toa có 4 hành khách, 2 toa còn lại mỗi toa có 1 hành khách. Bài tập 1.20. Giả sử m, n, r là các số nguyên dương. Chứng minh rằng C0 mCr n−m + C1 mCr−1 n−m + · · · + Cr mC0 n−m = Cr n Bài tập 1.21. Chứng minh rằng (a) C1 n + 2C2 n + · · · + nCn n = n2n−1 (b) 2.1.C2 n + 3.2.C3 n + · · · + n(n − 1)Cn n = n(n − 1)2n−2 Bài tập 1.22. Cho m, n, r là các số nguyên dương. Chứng minh rằng (a) m k=0 Cr n−k = Cr+1 n+1 − Cr+1 n−m (b) m k=0 (−1)k Ck n = (−1)m Cm n−1 Bài tập 1.23. Chứng minh rằng C0 n 2 + C1 n 2 + · · · + (Cn n )2 = Cn 2n Bài tập 1.24. Chứng minh rằng n k=0 2n! (k!)2 = P với fX là hàm mật độ xác suất của biến ngẫu nhiên X và ln là logarit tự nhiên. Tính entropy của biến ngẫu nhiên Gauss với trung bình 0 và phương sai σ2 = 2.
    8. 35. Chương 5 Lí thuyết mẫu Bài tập 5.1. Số liệu về chiều cao của các sinh viên nữ (Đơn vị: inch) trong một lớp học như sau: 62 64 66 67 65 68 61 65 67 65 64 63 67 68 64 66 68 69 65 67 62 66 68 67 66 65 69 65 70 65 67 68 65 63 64 67 67 (a) Tính chiều cao trung bình và độ lệch tiêu chuẩn. (b) Trung vị của chiều cao sinh viên lớp này là bao nhiêu? Bài tập 5.2. Cho bộ dữ liệu sau: 4.2 4.7 4.7 5.0 3.8 3.6 3.0 5.1 3.1 3.8 4.8 4.0 5.2 4.3 2.8 2.0 2.8 3.3 4.8 5.0 Tính trung bình mẫu, phương sai mẫu và độ lệch tiêu chuẩn. Bài tập 5.3. Cho bộ dữ liệu sau: 43 47 51 48 52 50 46 49 45 52 46 51 44 49 46 51 49 45 44 50 48 50 49 50 Tính trung bình mẫu, phương sai mẫu và độ lệch tiêu chuẩn. Bài tập 5.4. Xét biểu thức y = n i=1(xi − a)2 . Với a nào thì y đạt giá trị nhỏ nhất?
    9. 36. 32 Bài tập 5.5. Xét yi = a + bxi, i = 1, . . . , n và a, b là các hằng số khác 0. Hãy tìm mối liên hệ giữa x và y, sx và sy. Bài tập 5.6. Giả sử ta có mẫu cỡ n gồm các giá trị quan trắc x1, x2, . . . , xn và đã tính được trung bình mẫu xn và phương sai mẫu s2 n. Quan trắc thêm giá trị thứ (n + 1) là xn+1, gọi xn+1 và s2 n+1 lần lượt là trung bình mẫu và phương sai mẫu ứng với mẫu có (n + 1) quan trắc. (a) Tính xn+1 theo xn và xn+1. (b) Chứng tỏ rằng ns2 n+1 = (n − 1)s2 n + n(xn+1 − xn)2 n + 1 Bài tập 5.7. Từ bảng các số ngẫu nhiên người ta lấy ra 150 số. Các số đó được phân thành 10 khoảng như sau: xi 1− 11− 21− 31− 41− 51− 61− 71− 81− 91− 10 20 30 40 50 60 70 80 90 100 ni 16 15 19 13 14 19 14 11 13 16 Xác định trung bình mẫu và phương sai mẫu. Bài tập 5.8. Khảo sát thu nhập của công nhân ở một công ty, cho bởi bảng sau (đơn vị ngàn đồng). Thu nhập = 1/9 và P(A) = P(B) = 1/18 + 1/18 + 2/9 = 1/3. Do đó P(AB) = P(A)P(B) Vậy A và B là hai biến cố độc lập nhau.

    --- Bài cũ hơn ---

  • Phép Thử, Biến Cố, Xác Suất Của Biến Cố
  • Biến Cố Và Xác Suất Của Biến Cố (Phương Pháp Giải Bài Tập)
  • Bai Tap Xac Suat Moi Nguoi Cung Giai Bt Xac Suat Tong Hop Doc
  • Sách Giải Bài Tập Toán Lớp 11 Bài 5: Xác Suất Của Biến Cố
  • Giải Sách Bài Tập Tiếng Anh 8 Unit 12: A Vacation Abroad.
  • Bạn đang đọc nội dung bài viết Bai Tap Co Loi Giai Xac Suat Thong Ke trên website Expressrotaryhotpot.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100