Đề Xuất 5/2022 # Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai # Top Like

Xem 10,593

Cập nhật nội dung chi tiết về Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai mới nhất ngày 22/05/2022 trên website Expressrotaryhotpot.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 10,593 lượt xem.

--- Bài mới hơn ---

  • Giải 9 Bài Pt Mũ & Log Bằng Ẩn Số Phụ
  • 9 Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên
  • Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Hệ Phương Trình Bậc Nhất Hai Ẩn (Nâng Cao)
  • Chuyên đề: Phương trình – Hệ phương trình

    Các dạng phương trình quy về phương trình bậc hai

    Lý thuyết & Phương pháp giải

    Phương trình trùng phương: ax 4 + bx 2 + c = 0, (a ≠ 0) (*)

    – Đặt t = x 2 ≥ 0 thì (*) ⇔ at 2 + bt + c = 0 (**)

    – Để xác định số nghiệm của (*), ta dựa vào số nghiệm của (**) và dấu của chúng, cụ thể:

    + Để (*) vô nghiệm ⇔

    + Để (*) có 1 nghiệm

    + Để (*) có 2 nghiệm phân biệt ⇔

    + Để (*) có 3 nghiệm ⇔ (**) có 1 nghiệm bằng 0 và nghiệm còn lại dương.

    + Để (*) có 4 nghiệm ⇔ (**) có 2 nghiệm dương phân biệt.

    Một số dạng phương trình bậc bốn quy về bậc hai

    Phương pháp giải: Chia hai vế cho x 2 ≠ 0, rồi đặt t = x + α/x ⇒ t 2 = (x + α/x) 2 với α = d/b

    Loại 2. (x+a)(x+b)(x+c)(x+d) = e với a + c = b + d

    Phương pháp giải: = e

    Loại 3. (x+a)(x+b)(x+c)(x+d) = ex 2 với a.b = c.d

    Phương pháp giải: Đặt t = x 2 + ab + ((a+b+c+d)/2)x thì phương trình

    ⇔ (t + ((a+b-c-d)/2)x)(t – ((a+b-c-d)/2)x) = ex 2 (có dạng đẳng cấp)

    Phương pháp giải: Đặt x = t-(a+b)/2 ⇒ (t + α) 4 + (t – α) 4 = c với α = (a-b)/2

    Phương pháp giải: Tạo ra dạng A 2 = B 2 bằng cách thêm hai vế cho một lượng 2k.x 2 + k 2, tức phương trình (1) tương đương:

    Cần vế phải có dạng bình phương

    Phương pháp giải: Tạo A 2 = B 2 bằng cách thêm ở vế phải 1 biểu thức để tạo ra dạng bình phương: (x 2 + (a/2)x + k) 2 = x 4 + ax 3 + (2k + a 2/4)x 2 + kax + k 2. Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: (2k + a 2/4)x 2 + kax + k 2, thì phương trình

    Lúc này cần số k thỏa:

    Lưu ý: Với sự hổ trợ của casio, ta hoàn toàn có thể giải được phương trình bậc bốn bằng phương pháp tách nhân tử. Tức sử dụng chức năng table của casio để tìm nhân tử bậc hai, sau đó lấy bậc bốn chia cho nhân tử bậc hai, thu được bậc hai. Khi đó bậc bốn được viết lại thành tích của 2 bậc hai

    Phân tích phương trình bậc ba bằng Sơ đồ Hoocner

    Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

    Nguyên tắc nhẩm nghiệm:

    + Nếu tổng các hệ số bằng 0 thì phương trình sẽ có 1 nghiệm x = 1

    + Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có 1 nghiệm x = -1

    + Nếu phương trình chứa tham số, ta sẽ chọn nghiệm x sao cho triệt tiêu đi tham số m và thử lại tính đúng sai

    Chia Hoocner: đầu rơi – nhân tới – cộng chéo

    Ví dụ minh họa

    Hướng dẫn:

    Ta thấy x = 0 không phải là nghiệm của phương trình nên chia hai vế phương trình cho x 2 ta được: 2(x 2 + 1/x 2) – 5(x + 1/x) + 6 = 0

    Ta có phương trình: 2(t 2 – 2) – 5t + 6 = 0 ⇔ 2t 2 – 5t + 2 = 0 ⇔

    + t = 1/2 ⇒ x + 1/x = 1/2 ⇔ 2x 2 – x + 2 = 0 (vô nghiệm)

    + t = 2 ⇒ x + 1/x = 2 ⇔ x 2 – 2x + 1 = 0 ⇔ x = 1

    Vậy phương trình có nghiệm duy nhất x = 1

    Bài 2: Giải phương trình x(x+1)(x+2)(x+3) = 24

    Hướng dẫn:

    Phương rình tương đương với (x 2 + 3x)(x 2 + 3x + 2) = 24

    Đặt t = x 2 + 3x, phương trình trở thành

    t(t+2) = 24 ⇔ t 2 + 2t – 24 = 0 ⇔

    + t = -6 ⇒ x 2 + 3x = -6 ⇔ x 2 + 3x + 6 = 0 (Phương trình vô nghiệm)

    + t = 4 ⇒ x 2 + 3x = 4 ⇔ x 2 + 3x – 4 = 0 ⇔

    Vậy phương rình có nghiệm là x = -4 và x = 1

    Bài 3: Giải phương trình 4(x+5)(x+6)(x+10)(x+12) = 3x 2

    Hướng dẫn:

    Phương trình tương đương với 4(x 2 + 17x + 60)(x 2 + 16x + 60) = 3x 2 (*)

    Ta thấy x = 0 không phải là nghiệm của phương trình.

    Xét x ≠ 0, chia hai vế cho x 2 ta có

    (*)⇔ 4(x + 17 + 60/x)(x + 16 + 60/x) = 3

    Đặt y = x + 16 + 60/x phương trình trở thành

    4(y+1)y = 3 ⇔ 4y 2 + 4y – 3 = 0 ⇔

    Với y = 1/2 ta có x + 16 + 60/x = 1/2 ⇔ 2x 2 + 31x + 120 = 0

    Với y = -3/2 ta có x + 16 + 60/x = -3/2 ⇔ 2x 2 + 35x + 120 = 0

    Vậy phương trình có nghiệm là x = -8, x = -15/2 và

    Hướng dẫn:

    Suy ra x = -2

    Vậy phương trình có nghiệm duy nhất x = -2

    Bài 5: Giải phương trình

    Hướng dẫn:

    Điều kiện: x ≠ 2; x ≠ 3

    Đặt u = (x+1)/(x-2); v = (x-2)/(x-3) ta được u 2 + uv = 12v 2

    ⇔(u – 3v)(u + 4v) = 0 ⇔ u = 3v; u = -4v

    +) u = 3v ⇔ (x+1)/(x-2) = 3(x-2)/(x-3) ⇔ x 2 + 4x + 3 = 3x 2 – 12x + 12

    ⇔2x 2 – 16x + 9 = 0 ⇔ x = (8 ± √46)/2

    +) u = -4v ⇔ (x+1)/(x-2) = -4(x-2)/(x-3) ⇔ x 2 + 4x + 3 = -4x 2 + 16x – 16

    ⇔ 5x 2 – 12x + 19 = 0(Vô nghiệm)

    Vậy phương trình đã cho có hai nghiệm là x = (8 ± √46)/2

    Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

    Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

    Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

    Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

    phuong-trinh-he-phuong-trinh.jsp

    --- Bài cũ hơn ---

  • Dạng Bài Tập Về Áp Dụng Công Thức Giải Bất Phương Trình Lớp 10 Phải Biết
  • Đạo Hàm Và Bài Toán Giải Phương Trình, Bất Phương Trình Lượng Giác
  • Sử Dụng Máy Tính Cầm Tay Giải Nhanh Trắc Nghiệm Lượng Giác
  • Cách Tìm Hai Số Khi Biết Tổng Và Tích Của Chúng
  • Phương Trình Bậc Hai, Giải Bài Toán Bằng Cách Lập Pt Chuyen De Phuong Trinh Bac Hai Dinh Ly Viet Giai Bai Toan Docx
  • Bạn đang đọc nội dung bài viết Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai trên website Expressrotaryhotpot.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100