Đề Xuất 5/2022 # Giải Sách Bài Tập Toán 10 Bài 2: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai # Top Like

Xem 8,316

Cập nhật nội dung chi tiết về Giải Sách Bài Tập Toán 10 Bài 2: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai mới nhất ngày 27/05/2022 trên website Expressrotaryhotpot.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 8,316 lượt xem.

--- Bài mới hơn ---

  • Giải Bài Tập Sgk Bài 7: Phương Trình Quy Về Phương Trình Bậc Hai
  • Sách Giải Bài Tập Toán Lớp 10 Bài 2: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai
  • Sách Giải Bài Tập Toán Lớp 9 Bài 7: Phương Trình Quy Về Phương Trình Bậc Hai
  • Giải Bài Toán Chuyển Động Bằng Cách Lập Phương Trình
  • Mô Hình Hổi Qui Đơn Biến
  • Sách Giải Sách Bài Tập Toán 10 Bài 2: Phương trình quy về phương trình bậc nhất, bậc hai giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 10 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

    Bài 3.13 trang 66 Sách bài tập Đại số 10: Giải và biện luận theo tham số m các phương trình sau:

    Lời giải:

    a) Phương trình đã cho tương đương với phương trình

    ⇔ (m – 2)(m – 4)x = (m + 1)(m – 2)

    Kết luận

    Với m = 2, mọi số thực x đều là nghiệm của phương trình;

    Với m = 4, phương trình vô nghiệm.

    b) Điều kiện của phương trình là x ≠ -1, ta có

    ⇒ (m – 2)x + 3 = (2m – 1)(x + 1)

    ⇒ (m + 1)x = 4 – 2m (1)

    Với m = -1 phương trình (1) vô nghiệm nên phương trình đã cho cũng vô nghiệm.

    Kết luận

    Với m = -1 hoặc m = 5 phương trình vô nghiệm

    c) Điều kiện của phương trình là x ≠ 1. Khi đó ta có

    ⇔ (2m + 1)x – m = (x + m)(x – 1)

    ⇔ x = 0, x = m + 2

    Giá trị x = m + 2 thỏa mãn điều kiện của phương trình khi m ≠ -1

    Kết luận

    Vậy với m = -1 phương trình có nghiệm duy nhất x = 0;

    Với m ≠ -1 phương trình có hai nghiệm x = 0 và x = m + 2.

    d) Điều kiện của phương trình là x ≠ m . Khi đó ta có

    ⇔ (3m – 2)x – 5 = -3x + 3m

    ⇔ (3m + 1)x = 3m + 5

    Nghiệm này thỏa mãn điều kiện của phương trình khi và chỉ khi

    Kết luận

    Bài 3.14 trang 66 Sách bài tập Đại số 10: Cho phương trình

    (m + 2)x 2 + (2m + 1)x + 2 = 0

    a) Xác định m để phương trình có hai nghiệm trái dấu và tổng hai nghiệm bằng -3.

    b) Với giá trị nào của m thì phương trình có nghiệm kép? Tìm nghiệm kép đó.

    Đáp số: m = -5.

    b) Phương trình có nghiệm kép khi m ≠ -2 và Δ = 0.

    Khi m = -3/2 nghiệm kép của phương trình là x = 2.

    Bài 3.15 trang 66 Sách bài tập Đại số 10: Cho phương trình 9x2 + 2(m2 – 1)x + 1 = 0

    b) Xác định m để phương trình có hai nghiệm x 1, x 2 mà x 1 + x 2 = -4

    Bài 3.16 trang 66 Sách bài tập Đại số 10: Giải các phương trình

    Lời giải:

    a) Điều kiện của phương trình là x ≥ 4/3

    Bình phương hai vế ta được phương trình hệ quả

    Bình phương hai vế ta được phương trình hệ quả.

    ⇔ 3x 2 – 2x – 2 = 0

    Phương trình cuối vô nghiệm, do đó phương trình đã cho vô nghiệm.

    d) Điều kiện của phương trình là: 3x 2 – 4x – 4 ≥ 0 và 2x + 5 ≥ 0

    Phương trình cuối có hai nghiệm x 1 = -1, x 2 = 3. Cả hai giá trị này đều thỏa mãn các điều kiện và nghiệm đúng phương trình đã cho.

    Vậy phương trình đã có hai nghiệm x 1 = -1, x 2 = 3

    Bài 3.17 trang 67 Sách bài tập Đại số 10: Giải và biện luận theo tham số m các phương trình sau

    3x + 2m = x – m ⇔ 2x = -3m ⇔ x = -3m / 2

    Ta có:

    -3x – 2m = x – m ⇔ 4x = -m ⇔ x = -m / 4

    Ta có:

    Kết luận

    Với m = 0 phương trình có nghiệm x = 0;

    Phương trình (1) ⇔ x = -3m + 2

    Phương trình (2) ⇔ 3x = m – 2 ⇔ x = (m – 2) / 3

    Vậy với mọi giá trị của m phương trình có nghiệm là:

    c) m = 0 phương trình trở thành

    -x – 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

    Kết luận. Với m ≤ 1 phương trình vô nghiệm.

    Bài tập trắc nghiệm trang 67, 68 Sách bài tập Đại số 10:

    Bài 3.18: Nghiệm của phương trình sau là:

    A. x = -2/3 B. x = 1

    B. x = 1 và x = -2/3 D. x = -1/3

    Lời giải:

    Điều kiện của phương trình là x ≠ (-1)/3.

    Để phá các dấu giá trị tuyệt đối, ta phải xét ba trường hợp x < -3, -3 ≤ x < 1/2 và x ≥ 1/2 dẫn đến giải phương trình rất tốn thời gian. Cách nhanh nhất là xét từng phương án. Phương án D bị loại di điều kiện của phương trình. Với phương án A, thay x = (-2)/3 vào phương trình ta thấy vế trái âm, còn vế phải dương, nên phương án này bị loại. Phương án C cũng bị loại do có giá trị x = (-2)/3.

    Đáp án: B

    A. x = 0 và x = -2 B. x = 0

    C. x = 3 D. x = -2

    Lời giải:

    Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại. Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.

    Đáp án: C

    Bài 3.20: Tìm nghiệm của phương trình sau:

    A. x = 1/2 B. x = 1

    C. x = 0 D. phương trình vô nghiệm

    Lời giải:

    Điều kiện của phương trình:

    4x – 3 ≥ 0 ⇒ x ≥ 3/4;

    -2x + 1 ≥0 ⇒ x ≤ 1/2.

    Không có giá trị nào của x thỏa mãn hai điều kiện này nên phương trình vô nghiệm.

    Đáp án: D

    Bài 3.21: Tìm nghiệm của phương trình sau:

    A. x = 0 và x = 1 B. x = 1 và x = 2

    C. x = 0 và x = 2 D. x = 0 và x = 1

    Lời giải:

    Thay x = 0 và x = 2 vào phương trình ta thấy hai vế đều cho giá trị là 3.

    Đáp án: C

    A. x = 0, x = 2, x = 8 và x = -4

    B. x = 0 và x = 4

    C. x = -2 và x = 4

    D. x = 1 và x = -4

    Lời giải:

    Phương án A có nhiều giá trị quá, thay vào phương trình mất nhiều thời gian, nên ta xét các phương trình còn lại.

    Với phương án B, khi thay x = 0 vào phương trình thì hai vế đều bằng 4 nên x = 0 là một nghiệm. Tuy nhiên khi thay giá trị x = 4 vào phương trình thì vế trái bằng 0, còn vế phải bằng 16. Vậy phương án B và phương án C đều bị loại. Với phương án D, giá trị x = 1 cũng không phải là nghiệm của phương trình, nên phương án D bị loại.

    Đáp án: A

    Bài 3.23: Phương trình

    (m + 1)x 2 – 3(m – 1)x + 2 = 0

    có một nghiệm gấp đôi nghiệm kia thì giá trị của tham số m là:

    A. m = 1 B. m = -1

    C. m = 0 hoặc m = 3 D. m = 2

    Lời giải:

    Với m = 1 phương trình đã cho có dạng

    Phương trình này vô nghiệm, nên phương án A bị loại. Với m = -1 phương trình đã cho trở thành phương trình bậc nhất 6x + 2 = 0 chỉ có một nghiệm nên phương án B bị loại.

    Với m = 2 phương trình đã cho trở thành phương trình

    Phương trình này vô nghiệm, nên phương án D bị loại.

    Đáp án: C

    Bài 3.24: Phương trình

    có hai nghiệm âm phân biệt khi tham số m nằm trong khoảng nào sau đây?

    A. 0 < m < 1

    B. -1 < m < 1/24

    C. -2 < m < 0

    D. -1 < m < 1

    Đáp án: B

    A. m = 1

    B. m = -3

    C. m = -2

    D. Không tồn tại m

    Lời giải:

    Phương trình bậc hai ax 2 + bx + c = 0 có hai nghiệm x 1 và x 2 mà x 1 + x 2 = 4 khi

    Δ ≥ 0 và (-b)/a = 4.

    Với m = 1 thì (-b)/a = -2(m + 1) = -4 không đúng.

    Với m = -3 thì (-b)/a = 4 đúng, nhưng

    Với m = -2 thì (-b)/a = 2, sai.

    Vậy cả 3 phương án A, B, C đều sai và đáp án là D.

    Đáp án: D

    --- Bài cũ hơn ---

  • Giải Bài Tập Trang 62, 63 Sgk Đại Số 10: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai
  • Tổng Hợp Bài Tập Pascal Có Giải, Từ Dễ Đến Khó
  • Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
  • Giải Sách Bài Tập Toán 9 Bài 4: Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
  • Bài Tập Sgk Bài 4: Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
  • Bạn đang đọc nội dung bài viết Giải Sách Bài Tập Toán 10 Bài 2: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai trên website Expressrotaryhotpot.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!