Bài Tập Về Hình Thang, Tính Diện Tích Hình Thang Có Lời Giải

--- Bài mới hơn ---

  • Giải Bài Tập Trang 94, 95 Sgk Toán 5: Luyện Tập Chung Diện Tích Hình Thang Giải Bài Tập Toán Lớp 5
  • Giải Bài Tập Trang 141 Sgk Toán 5: Quãng Đường
  • Giải Bài Tập Trang 141, 142 Sgk Toán 5: Luyện Tập Quãng Đường
  • Giải Bài Tập Trang 141 Sgk Toán 5, Bài 1, 2, 3
  • Giải Bài Tập Toán Lớp 4 1.0 Apk
  • Chia sẻ một số bài tập cơ bản về hình thang và tính diện tích hình thang có lời giải dành cho học sinh khối lớp 5 luyện tập dạng toán này.

    Để làm được dạng toán này, trước hết phải nắm được công thức tính diện tích hình thang:

    Diện tích hình thang = (Đáy lớn + Đáy nhỏ) x chiều cao : 2

    I. Đề bài

    b) Hỏi có thể trồng được bao nhiêu cây đu đủ, biết rằng trồng mỗi cây đu đủ cần 1,5m² đất ?

    c) Hỏi số cây chuối trổng được nhiều hơn số cây đu đủ bao nhiêu cây, biết rằng trồng mỗi cây chuối cần 1m² đất ?

    Bài 4: Tính diện tích hình thang có đáy lớn bằng 25 m, chiều cao bằng 80% đáy lớn, đáy bé bằng 90% chiều cao.

    Bài 5: Hình thang có tổng độ dài hai đáy bằng 24 cm, đáy lớn hơn đáy bé 1,2 cm, chiều cao kém đáy bé 2,4 cm. Tính diện tích hình thang.

    Bài 6: Tính diện tích hình thang có đáy lớn hơn đáy bé 30 cm; biết 20% đáy lớn bằng 30% đáy bé, đáy bé kém chiều cao 0,5 cm.

    Bài 7: Một thửa ruộng hình thang có đáy lớn 120 m, đáy bé bằng 2/3 đáy lớn và bằng 4/3 chiều cao. Người ta trồng ngô trên thửa ruộng đó, tính ra trung bình 100 m2 thu được 50 kg ngô. Hỏi cả thửa ruộng thu được bao nhiêu tạ ngô?

    Bài 8: Thửa ruộng hình thang có trung bình cộng hai đáy là 46 m. Nếu mở rộng đáy lớn thêm 12 m và giữ nguyên đáy bé thì thì được thửa ruộng mới có diện tích lớn hơn diện tích thửa ruộng ban đầu là 114 m². Tính diện tích thửa ruộng ban đầu

    II. Lời giải

    a, Diện tích hình thang là: (18,5 + 25) x 12,4 : 2 = 269,7m²

    b, Diện tích hình thang là: (10,25 + 15,5) x 10 : 2 = 128,75m²

    Bài 1:

    Diện tích hình thang ABDE là: (1,6 + 2,5) x 1,2 : 2 = 2,46m²

    Diện tích hình thang ABCD là: (1,6 + 2,5 + 1,3) x 1,2 : 2 = 3,24m²

    Bài 2:

    Diện tích hình tam giác BEC là: 3,24 – 2,46 = 0,78m²

    Diện tích hình thang ABED lớn hơn diện tích hình tam giác BEC là: 2,46 – 0,78 = 1,68m² = 168dm²

    a, Diện tích của mảnh vườn hình thang là: (50 + 70) x 40 : 2 = 2400m²

    Diện tích trồng đu đủ là: 2400 x 30 : 100 = 720m²

    Bài 3:

    Diện tích trồng chuối là: 2400 x 25 : 100 = 600m²

    Diện tích trồng rau là: 2400 – 720 – 600 = 1080m²

    b, Số cây đủ đủ trồng được là: 720 : 1,5 = 480 cây

    c, Số cây chuối trồng được là: 600 : 1 = 600 cây

    Số cây chuối trồng được nhiều hơn số cây đủ đủ là số cây là: 600 -480 = 120 cây

    Chiều cao của hình thang là: 25 x 80 : 100 = 20m

    Đáy bé của hình thang là: 20 x 90 : 100 = 18m

    Bài 4:

    Diện tích hình thang là: (25 + 18) x 20 : 2 = 430m²

    Đáy bé là: (24 – 1,2) : 2 = 11,4cm

    Chiều cao của hình thang là: 11,4 – 2,4 = 9cm

    Bài 5:

    Diện tích của hình thang là: 24 x 9 : 2 = 108m²

    Đổi 20% = 1/5, 30% = 3/10

    Phân số chỉ tỉ số giữa đáy lớn và đáy bé là: 3/10 : 1/5 = 3/2

    Bài 6:

    Hiệu số phần bằng nhau là: 3 – 2 = 1 (phần)

    Đáy bé là: 30 : 1 x 2 = 60cm

    Đáy lớn là: 30 : 1 x 3 = 90cm

    Chiều cao của hình thang là: 60 + 0,5 = 60,5cm

    Diện tích của hình thang là: (60 + 90) x 60,5 : 2 = 4537,5cm²

    Đáy bé là: 120 x 2 : 3 = 80m

    Chiều cao là: 80 x 3 : 4 = 60m

    Bài 7:

    Diện tích của thửa ruộng hình thang là: (120 + 80) x 60 : 2 = 6000m²

    Số kg ngô thu được là: 6000 : 50 = 120kg

    Đổi 120kg = 1,2 tạ

    Tổng hai đáy là: 46 x 2 = 92m

    Goi chiều cao thửa ruộng là h

    Bài 8:

    Diện tích thửa ruộng ban đầu là: 92 x h : 2 = 46 x h

    Tổng đáy lớn và đáy bé sau khi mở rộng đáy lớn thêm 12m là: 92 + 12 = 104m

    Diện tích thửa ruộng sau khi mở rộng đáy lớn là: 104 x h : 2 = 52 x h

    Thửa ruộng mới có diện tích mới lớn hơn 114m²

    Suy ra 52 x h – 46 x h = 114 hay h = 19m

    Diện tích thửa ruộng ban đầu là: 46 x 19 = 874m²

    --- Bài cũ hơn ---

  • Giải Bài Tập Trang 94, 95 Sgk Toán 5: Luyện Tập Chung Diện Tích Hình Thang
  • Giải Bài Tập Trang 93, 94 Sgk Toán 5: Diện Tích Hình Thang
  • Giải Bài Tập Trang 43 Sgk Toán 5: Luyện Tập Chung Số Thập Phân
  • Giải Bài Tập Trang 43 Sgk Toán 5: Luyện Tập Chung Số Thập Phân Giải Bài Tập Toán Lớp 5
  • Câu 1, 2, 3 Trang 43 Vở Bài Tập (Sbt) Toán 5 Tập 2
  • Các Bài Toán Hình Học Lớp 9 Có Lời Giải

    --- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Một Số Bài Tập Toán Hình Học 7 Ôn Tập Học Kì 1 Có Lời Giải

    --- Bài mới hơn ---

  • Giải Bài Tập Sgk Toán Lớp 7 Bài 1: Thu Thập Số Liệu Thống Kê, Tần Số
  • Giải Bài Tập Sgk Toán Lớp 7 Bài 1: Khái Niệm Về Biểu Thức Đại Số
  • Giải Bài Tập Sgk Toán Lớp 9 Bài 1: Sự Xác Định Đường Tròn. Tính Chất Đối Xứng Của Đường Tròn
  • Sách Giải Bài Tập Toán Lớp 9 Bài 1: Góc Ở Tâm. Số Đo Cung
  • Giải Bài Tập Sgk Toán Lớp 9 Bài 1: Phương Trình Bậc Nhất Hai Ẩn
  • Sau khi xem xong các bài tập có lời giải, các em hãy tự làm bài tập ngay bên dưới để rèn luyện khả năng làm bài của mình.

    BÀI 1 :

    Cho tam giác ABC. M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.

    2.Chứng minh : AB // CD

    3.Trên DC kéo dài lấy điểm N sao cho CD =CN (C ≠ N) chứng minh : BN // AC.

    MA = MC (gt)

    MB = MD (gt)

    (đối đinh)

    Ta có :

    (góc tương ứng của ?ABM = ?CDM)

    Mà : ở vị trí so le trong

    Nên : AB // CD

    Mà : CD = CN (gt)

    AB = CN (cmt)

    BC cạnh chung.

    (so le trong)

    Mà : ở vị trí so le trong.

    Nên : BN // AC

    Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM = AN. Gọi H là trung điểm của BC.

    1. Chứng minh : ?ABH = ?ACH.
    2. Gọi E là giao điểm của AH và NM. Chứng minh : ?AME = ?ANE
    3. Chứng minh : MM // BC.

    AB = AC (gt)

    HB = HC (gt)

    AH cạnh chung.

    Xét ?AME và ?ANE, ta có :

    AM =AN (gt)

    (cmt)

    AE cạnh chung

    3. MM // BC

    Ta có : ?ABH = ?ACH (cmt)

    Mà : (hai góc kề bù)

    Hay BC AH

    Cmtt, ta được : MN AE hay MN AH

    Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.

    a) Chứng minh : ? ABD = ? EBD.

    b) Tia ED cắt BA tại M. chứng minh : EC = AM

    c) Nối AE. Chứng minh : góc AEC = góc EAM.

    Xét ?ABD và ?EBD, ta có :

    AB =BE (gt)

    (BD là tia phân giác góc B)

    BD cạnh chung

    Ta có : ? ABD = ? EBD (cmt)

    Suy ra : DA = DE và

    Xét ?ADM và ?EDC, ta có :

    DA = DE (cmt)

    (cmt)

    (đối đỉnh)

    3.

    Ta có : ?ADM = ?EDC (cmt)

    Suy ra : AD = DE; MD = CD và

    Hay AC = EM

    Xét ?AEM và ?EAC, ta có :

    AM = EC (cmt)

    (cmt)

    AC = EM (cmt)

    Cho tam giác ABC vuông góc tại A có góc B = 53 0.

    a) Tính góc C.

    b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

    c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

    d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.

    Giải.

    Xét ΔBAC, ta có :

    Xét ΔBEA và ΔBED, ta có :

    BE cạnh chung.

    (BE là tia phân giác của góc B)

    BD = BA (gt)

    Xét ΔBHF và ΔBHC, ta có :

    BH cạnh chung.

    (BE là tia phân giác của góc B)

    (gt)

    d. ΔBAC = ΔBDF và D, E, F thẳng hàng

    xét ΔBAC và ΔBDF, ta có:

    BC = BF (cmt)

    Góc B chung.

    BA = BC (gt)

    Mà : (gt)

    Nên : hay BD DF (1)

    Mặt khác : (hai góc tương ứng của ΔBEA = ΔBED)

    Mà : (gt)

    Nên : hay BD DE (2)

    Từ (1) và (2), suy ra : DE trùng DF

    Hay : D, E, F thẳng hàng.

    ===================================

    BÀI TẬP RÈN LUYỆN :

    Cho ABC có Â = 90 0. Tia phân giác BD của góc B(D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

    a) So sánh AD và DE

    b) Chứng minh:

    c) Chứng minh : AE BD

    Cho ΔABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN.

    a/. Ch/m :Δ AMB = ΔNMC

    b/. Vẽ CD AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.

    c/. Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

    Ch/m : BI = CN.

    Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

    a) Chứng minh BE = DC

    b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

    c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

    Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

    a) Tam giác AIB bằng tam giác CID.

    b) AD = BC v à AD // BC.

    Cho tam giác ABC có góc A =35 0 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

    a) Chứng minh ΔAHB = ΔDBH.

    b) Chứng minh AB//HD.

    c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

    d) Tính góc ACB , biết góc BDH= 35 0 .

    Cho tam giác ABC cân tại A và có .

    1. Tính và
    2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.

    Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

    1. Chứng minh : DB = EC.
    2. Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
    3. Chứng minh rằng : DE // BC.

    Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

    1. Chứng minh : CD // EB.
    2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.

    Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

    Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K. chứng minh : BH = CK.

    ============================================

    Thời gian làm bài 90 phút.

    BÀI 1 : (2,5 điểm) tính bằng cách hợp lý :

    a)

    b)

    c)

    Tìm x, biết :

    a)

    b)

    BÀI 3 : (1,5 điểm)

    Ba đội cày làm việc trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong 12 ngày. Đội thứ hai hoàn thành công việc trong 9 ngày. Đội thứ ba hoàn thành công việc trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy cày biết Đội thứ nhất ít hơn Đội thứ hai 2 máy và năng suất của các máy như nhau.

    Cho tam giác ABC vuông góc tại A có góc B = 53 0.

    a) Tính góc C.

    b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

    c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

    d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.

    --- Bài cũ hơn ---

  • Ôn Tập Toán Hình Học Lớp 9 Học Kì 1: Đường Tròn
  • Đề Cương Ôn Tập Học Kì 1 Môn Toán Lớp 6 Năm 2022
  • Bài 44, 45, 46, 47, 48 Trang 95 Sbt Toán 8 Tập 2
  • Bài 35, 36, 37, 38 Trang 92 Sbt Toán 8 Tập 2
  • Giải Bài Tập Trang 5, 6 Sgk Toán Lớp 8 Tập 1: Nhân Đơn Thức Với Đa Thức Giải Bài Tập Môn Toán Lớp 8
  • Bản Mềm: Bài Tập Hình Học Nâng Cao Lớp 5 Có Lời Giải

    --- Bài mới hơn ---

  • Tổng Hợp Lý Thuyết, Bài Tập Chương 2 Hình Học 8 Có Đáp Án.
  • Đề Học Kì 2 Toán 8 Có Đáp Án Khá Hay Năm 2022
  • Top 4 Đề Thi Toán Lớp 8 Học Kì 2 Có Đáp Án, Cực Sát Đề Chính Thức.
  • Tổng Hợp Lý Thuyết, Bài Tập Chương 1 Hình Học 8 Có Đáp Án.
  • Các Dạng Toán Về Hình Chữ Nhật
  • Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải

    Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải được biên soạn có hệ thống. Phân loại khoa học theo từng dạng bài cụ thể. Quá trình luyện tập học sinh có thể hệ thống hóa lời giải một cách chi tiết. Quý thầy cô giáo có thể tải về dựa theo đối tượng học sinh của mình. Để sửa đổi cho phù hợp. Ngoài ra với phương pháp dạy học tích cực. Thầy cô có thể đưa những ví dụ trực quan hơn vào câu hỏi. Qua đó kích thích sự sáng tạo của học sinh Qua Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải. Tải thêm bộ đề thi cuối kỳ 2 môn toán cấp tiểu học, tài liệu tiểu học

    Chương trình cơ bản Toán 5 có gì

    Để dễ dàng hơn trong làm bài tập hình học nâng cao lớp 5 các bạn cần nắm vững kiến thức cơ bản trước. Trong phần này, chúng tôi sẽ nêu tổng quát kiến thức hình học trong chương trình Toán 5:

    • Hình tam giác và diện tích hình tam giác
    • Hình thang và diện tích hình thang
    • Hình tròn, đường tròn
    • Chu vi và diện tích hình tròn
    • Hình hộp chữ nhật, hình lập phương
    • Diện tích xung quanh, diện tích toàn phần
    • Thể tích của một hình
    • Hình trụ, hình cầu
    • Bảng đơn vị đo thể tích
    • Bảng đơn vị đo thời gian
    • Bảng đơn vị đo khối lượng
    • Bảng đơn vị đo độ dài
    • Cộng, trừ, nhân, chia thời gian
    • Bài toán về tỉ lệ nghịch

    Hình ảnh bản mềm

    Đối với bài tập hình học nâng cao lớp 5, nội dung vẫn xoay quanh những kiến thức cơ bản trên. Tuy nhiên độ khó của nó thì khác nhau rõ rệt. Nếu như cơ bản chỉ yêu cầu áp dụng công thức thì toán nâng cao lại yêu cầu vận dụng linh hoạt tính chất hình học.

    Ngoài ra còn cần những kĩ năng mới như cắt, ghép hình, chứng minh tính chất, nêu giả định,… Hình học lớp 5 được đánh giá là chương trình khó. Hy vọng tài liệu của chúng tôi sẽ trợ giúp các bạn trong quá trình học.

    Những lưu ý khi làm bài tập hình học

    • Vẽ hình ra cả giấy nháp trước. Như vậy, các bạn có thể tránh vẽ nhầm vào vở. Nhờ vậy, hình vẽ trong bài làm luôn sạch đẹp.
    • Cần thể hiện những dữ liệu bài cho lên hình vẽ một cách rõ ràng. Như vậy, khi tìm cách giải không cần phải nhìn lại đề bài nữa.
    • Nên dùng kí hiệu thống nhất với các loại dữ liệu như đường thẳng song song, …
    • Nếu như cảm thấy khó trong việc giải quyết bài toán, hãy thử dùng sơ đồ ngược. Tức là đi từ yêu cầu của bài, xác định những yếu tố cần có để suy ra yêu cầu của bài.

    Ngay từ lớp 5, các bạn nên tạo thói quen làm bài để khi lên Toán 6, 7, … việc làm toán hình sẽ dễ dàng hơn. Một số điều cần chú ý khi làm bài toán hình như sau:

    Bài tập ví dụ:

    Lời giải:

    Đề bài: Cho tam giác ABC. Trên BC lấy I là trung điểm của BC. Trên đoạn thẳng AI lấy điểm M thỏa mãn AM = 2MI. Cm kéo dài cắt AB tại điểm N. So sánh diện tích hai tam giác AMN và BMN.

    Do tam giác MIC và MAC có cùng đường cao kẻ từ C. AM = 2MI

    Do hai tam giác MIC và MIB có cùng đường cao kẻ từ M, IC = IB

    Tải tài liệu miễn phí ở đây

    Do tam giác MAC và MBC có chung đáy MC nên 2 đường cao kẻ từu 2 đỉnh A và B của 2 tam giác là bằng nhau.

    --- Bài cũ hơn ---

  • Giải Bài 16, 17, 18, 19 Trang 75 Sgk Toán 8 Tập 1
  • Bài Tập Hình Thang Chọn Lọc, Có Đáp Án
  • Bài Tập Về Diện Tích Hình Thang Lớp 8 Trong Sgk, Sbt …
  • Bài Tập Về Hình Thang Cân
  • Chuyên Đề Hình Thang Và Hình Thang Cân
  • Lý Thuyết Và Bài Tập Hình Thang Cân (Có Lời Giải)

    --- Bài mới hơn ---

  • Bài Tập Hình Thang Cân Chọn Lọc, Có Đáp Án
  • Chuyên Đề Hình Thang Và Hình Thang Cân
  • Bài Tập Về Hình Thang Cân
  • Bài Tập Về Diện Tích Hình Thang Lớp 8 Trong Sgk, Sbt …
  • Bài Tập Hình Thang Chọn Lọc, Có Đáp Án
  • Bài viết bao gồm lý thuyết và bài tập về hình thang cân, các phần lý thuyết được trình bày khoa học đầy đủ cung cấp cho các em kiến thức để làm phần bài tập áp dụng bên dưới. Dưới mỗi bài tập đều có lời giải kèm theo để các em đối chiếu sau khi làm xong.

    LÝ THUYẾT VÀ BÀI TẬP HÌNH THANG CÂN A. LÝ THUYẾT

    1. Định nghĩa

    Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

    Tứ giác ABCD là hình thang cân (đáy AB; CD)

    2. Tính chất

    Định lí 1: Trong hình thang cân, hai cạnh bên bằng nhau.

    Định lí 2: Trong hình thang cân, hai đường chéo bằng nhau.

    Định lí 3: Hình thang có hai đường chéo bằng nhau là hình thang cân.

    3. Dấu hiệu nhận biết hình thang cân

    1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
    2. Hình thang có hai đường chéo bằng nhau là hình thang cân.

    Bài 1. Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài của cạnh ô vuông là 1cm).

    Lời giải:

    Theo hình vẽ, ta có: AB = 2cm, CD = 4cm.

    Áp dụng định lí Pitago trong tam giác vuông AED ta được:

    Suy ra AD = √10 cm

    Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm

    Lời giải:

    Bài 2. Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.

    Xét hai tam giác vuông AED và BFC

    Ta có: AD = BC (gt)

    ∠D = ∠C (gt)

    Nên ∆AED = ∆BFC (cạnh huyền – góc nhọn)

    Suy ra: DE = CF.

    Lời giải:

    Bài 3. Cho hình thang cân ABCD (AB//CD), E là giao điểm của hai đường chéo. Chứng minh rằng EA = EB, EC = ED.

    (*)Chứng minh EA = EB; EC = ED

    (*)Chứng minh ∠ACD = ∠BDC

    Ta có ABCD là hình thang cân nên AB//CD ⇒ AD = BC và ∠ADC = ∠BCD

    DC là cạnh chung của ΔADC và ΔBCD

    ⇒ ΔADC = ΔBCD (c.g.c) ⇒ ∠ACD = ∠BDC.

    Ta có: ∠ACD = ∠BDC ⇒ ∠ECD = ∠EDC ⇒ΔECD cân tại E ⇒ ED = EC

    Mặt khác: AC = BD (ABCD là hình thang cân)

    Bài 4. Đố. Trong các tứ giác ABCD, EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

    Lời giải:

    Để xét xem tứ giác nào là hình thang cân ta dùng tính chất “Trong hình thang cân hai cạnh bên bằng nhau”.

    Tứ giác ABCD là hình thang cân vì AD = BC.

    Bài 5: Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D, E sao cho AD = AE

    a) Chứng minh rằng BDEC là hình thang cân.

    Lời giải:

    b) Tính các góc của hình thang cân đó, biết rằng góc A = 50 o.

    a)Ta có AD = AE (gt) nên ∆ADE cân

    Trong tam giác ADE có: ∠D1 + ∠E1+ ∠A = 1800

    Tương tự trong tam giác cân ABC ta có ∠B = (1800 – ∠A)/2

    Nên ∠D1= ∠B mà góc ∠D1 , ∠B là hai góc đồng vị.

    Suy ra DE // BC

    Do đó BDEC là hình thang.

    Lại có ΔABC cân tại A ⇒ ∠B = ∠C Nên BDEC là hình thang cân.

    Lời giải:

    Bài 6: Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

    a) ΔABD và ΔACE có:

    AB = AC (gt)

    ∠A chung; ∠B 1 = ∠C 1

    Nên ΔABD = ΔACE (g.c.g)

    Suy ra AD = AE.

    Chứng minh BEDC là hình thang cân như câu a của bài 15.

    b) Vì BEDC là hìnhthang cân nên DE // BC.

    Suy ra ∠D1 = ∠B2 (so le trong)

    Lại có ∠B2 = ∠B1nên ∠B1= ∠A1

    Do đó tam giác EBD cân. Suy ra EB = ED.

    Vậy BEDC là hình-thang-cân có đáy nhỏ bằng cạnh bên.

    Lời giải:

    Bài 7: Hình thang ABCD (AB // CD) có ∠ACD = ∠BDC. Chứng minh rằng ABCD là hình thang cân.

    Gọi E là giao điểm của AC và BD.

    ∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.

    Suy ra EC = ED (1)

    Tương tự ∆EAB cân tại A suy ra: EA = EB (2)

    Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD

    Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.

    Bài 8: Chứng minh định lý: “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng:

    a) ΔBDE là tam giác cân.

    b) ΔACD = ΔBDC

    Lời giải:

    c) Hình thang ABCD là hình thang cân.

    a) Ta có AB//CD suy ra AB // CE và AC//BE

    Xét Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)

    Theo giả thiết AC = BD (2)

    Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

    b) Ta có AC // BE suy ra ∠C1 = ∠E (3)

    ∆BDE cân tại B (câu a) nên ∠D1 = ∠E (4)

    Từ (3) và (4) suy ra ∠C1 = ∠D1

    Xét ∆ACD và ∆BCD có AC = BD (gt)

    CD cạnh chung

    Nên ∆ACD = ∆BDC (c.g.c)

    c) ∆ACD = ∆BDC (câu b)

    Suy ra ∠ADC = ∠BD

    Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang-cân.

    Bài 9: Đố. Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32) Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho là bốn đỉnh của một hình thang cân.

    Lời giải:

    Có thể tìm được hai điểm M là giao điểm của các dòng kẻ sao cho nó cùng với ba điểm đã cho A, D, K là bốn đỉnh của một hình thang cân. Đó là hình thang AKDM1 (với AK là đáy) và hình ADKM 2(với DK là đáy).

    --- Bài cũ hơn ---

  • Giải Hóa Lớp 8 Bài 5: Nguyên Tố Hóa Học
  • Giải Bài Tập Sgk Hóa Học Lớp 8. Bài 29. Bài Luyện Tập 5
  • Giải Hóa Lớp 8 Bài 29: Bài Luyện Tập 5
  • Các Dạng Bài Tập Hóa Học Chương Trình Lớp 8 Thcs
  • 100 Bài Tập Ôn Tập Hóa Học 8
  • Cách Tính Diện Tích Hình Thoi Lớp 4, Bài Tập Và Có Ví Dụ Minh Họa

    --- Bài mới hơn ---

  • Giáo Án Diện Tích Hình Thoi Lớp 4 Giao An Dien Tich Hinh Thoi Doc
  • Giải Toán 8 Bài 4. Diện Tích Hình Thang
  • Các Dạng Bài Tập Giải Bài Toán Bằng Cách Lập Phương Trình, Hệ Phương Trình
  • 1 + 4 = 5, 2 + 5 = 12, 3 + 6 = 21, 8 + 11 = ?
  • Giải 2 Bài Toán Vui & Hay
  • Hình thoi là một trong số các khái niệm hình học chúng ta hay thường gặp, nó là tứ giác có bốn cạnh bằng nhau. Hình thoi cũng là hình bình hành có 2 đường chéo vuông góc với nhau, 2 cạnh bên bằng nhau. Vậy cách tính diện tích hình thoi có giống như cách tính diện tích hình bình hành hay không, chúng ta cùng nhau tìm hiểu ngay sau đây.

    Cách tính diện tích hình thoi lớp 4

    Khái niệm hình thoi, diện tích hình thoi

    Hình thoi là hình tứ giác có các cạnh đều bằng nhau.

    Tính chất của hình thoi:

    – Hai đường chéo trong hình thoi vuông góc, cắt nhau tại trung điểm của mỗi đường

    – Hai đường chéo là đường phân giác của góc của hình thoi

    – Có đầy đủ tính chất của hình bình hành

    Dấu hiệu nhận biết hình thoi:

    – Tứ giác có 4 cạnh bằng nhau

    – Hình bình hành có đường chéo là đường phân giác

    – Hình bình hành có hai đường chéo vuông góc với nhau

    – Diện tích là độ đo dùng để đo độ lớn của bề mặt một hình nào đó (diện tích bề mặt của một vật là toàn bộ những gì có thể nhìn thấy của vật đó).

    + Kí hiệu diện tích: S

    + Đơn vị của diện tích: đơn vị mũ 2 (vuông), chẳng hạn như m2 (mét vuông), cm2 (cetimet vuông)

    – Diện tích hình thoi chính là độ lớn bề mặt của hình mà ta có thể nhìn thấy được.

    Công thức tính diện tích hình thoi

    Muốn tính diện tích hình thoi, ta áp dụng công thức tính như sau:

    Trong đó:

    S là diện tích

    d1, d2 là độ dài hai đường chéo

    – Phát biểu bằng lời: Diện tích hình thoi bằng 1 nửa tích độ dài hai đường chéo.

    Công thức tính diện tích hình thoi dựa vào đường cao, cạnh bên

    Trong đó: h là đường cao hình thoi, a là cạnh bên

    Công thức tính iện tích hình thoi dựa vào hệ thức trong tam giác

    Trong đó: a là cạnh bên của hình thoi

    Ví dụ: Tính diện tích hình thoi cạnh a góc 60 độ.

    Giải: Áp dụng nhanh công thức tính diện tích hình thoi là S = a 2 sin60

    Giới thiệu một số dạng toán tính diện tích hình thoi

    Dạng 1 : Tính diện tích hình thoi khi biết độ dài 2 đường chéo.

    Đây chính là dạng toán tính diện tích hình thoi cơ bản nhất các em học sinh lớp 4 sẽ được làm quen trong chương trình Hình học sắp tới.

    Bài tập áp dụng 1 : Tính diện tích hình thoi biết độ dài các đường chéo là 4 cm, 5 cm

    – Nhận xét: Hai đường chéo có cùng đơn vị đo, bởi vậy ta chỉ cần sử dụng công thức tính diện tích hình thoi là giải ra.

    Bài giải

    Áp dụng công thức tính diện tích hình thoi, ta có:

    S = 1/2 x 4 x 5 = 10 (cm2)

    Đáp số: 10 cm2

    Bài tập áp dụng 2 : Tính diện tích hình thoi biết độ dài hai đường chéo là 5 m và 20 dm

    – Nhận xét: Ta thấy độ dài hai đường chéo đã cho không cùng đơn vị đo, chính vì vậy ta cần thực hiện bài toán theo hai bước như sau:

    + Bước 1: Đổi các đại lượng ra cùng đơn vị đo.

    + Bước 2: Áp dụng công thức tính diện tích hình thoi.

    Bài giải

    Đổi: 5 m = 50 dm

    Áp dụng công thức tính diện tích hình thoi, ta có:

    S = 1/2 x 50 x 20 = 500 (dm2)

    Đáp số: 500 dm2.

    Ngoài dạng bài tập đơn giản bên trên ra, các em cũng có thể tham khảo một số dạng toán tính diện tích hình thoi như sau :

    Dạng 2 : Tính diện tích hình thoi khi biết 4 cạnh.

    Dạng 3 : Tính diện tích hình thoi khi biết góc.

    Dạng 4 : Tính diện tích hình thoi khi biết số đo góc và độ dài một cạnh kề.

    Dạng 5 : Tính diện tích hình thoi khi biết độ dài cạnh đáy và chiều cao.

    Chú ý
    – Diện tích hình thoi được tính theo đơn vị mét vuông (m2) hoặc (cm2, dm2, mm2 …)
    – Làm bài tập về diện tích hình thoi lớp 4 thường xuyên, các em sẽ nhanh chóng nhớ được kiến thức, công thức tính diện tích hình thoi, làm bài hiệu quả.

    --- Bài cũ hơn ---

  • Bài Tập Toán Lớp 4: Hình Thoi
  • Giải Bài Tập Trang 19 Sgk Toán 4: Dãy Số Tự Nhiên
  • Giải Bài Tập Trang 19 Sgk Toán 4 Bài 1, 2, 3, 4
  • Giới Thiệu Bài Toán Lớp 4 Dãy Số Tự Nhiên
  • Giải Toán Lớp 4 Trang 104 Diện Tích Hình Bình Hành: Cách Giải, Đáp Số
  • Cách Giải Bài Tập Về Mô Hình Is Lm Có Lời Giải Dễ Hiểu

    --- Bài mới hơn ---

  • Giải Bài Tập Sgk Tiếng Anh Unit 2 Lớp 11
  • Chương 1 : Xác Suất Cổ Điển
  • Bài Tập Xác Suất Thống Kê Chương 2
  • Hướng Dẫn Giải Bài Tập Toán 11 Hình Học Trang 119 Sách Giáo Khoa
  • Hướng Dẫn Yugi H5: Cách Qua Các Bài Tập Huấn Luyện Khó
  • Bài tập về mô hình IS LM là một phần của môn học Kinh tế vĩ mô, đây được xem là môn học gây nhiều khó khăn cho sinh viên bởi sự phức tạp của môn học. Kinh tế vĩ mô có hai dạng bài tập chủ yếu. Một dạng là về chính sách tài khóa, tổng cầu cũng như là xác định cân bằng. Dạng tiếp theo là về cung, lãi suất và các chính sách về tiền tệ. Để tìm hiểu bài tập về mô hình IS LM chúng ta sẽ tìm hiểu lần lượt các dạng bài tập và lời giải sau đây.

    Dạng 1: Công thức chung thường được sử dụng cho bài tập về mô hình IS LM là AD=c+I+G+Ex-Im.

    Bài tập ví dụ: Trong nền kinh tế mở, biết: C=145+o,75Yd; I=135; G=550; Ex= 298; MPM=0.4.

    Yêu cầu:

    1. Tính hàm số tổng cầu và sản lượng cân bằng. 

    2. Giả sử xu hướng nhập khẩu cận biên giảm xuống còn 0,25; sản lượng cân bằng và cán cân thương mại thay đổi như thế nào?

    3. Nếu sản lượng tiềm năng là 1685 thì nền kinh tế bị tác động như thế nào bởi việc thay đổi xu hướng nhập khẩu cận biên?

    Chính phủ sẽ đưa ra chính sách ứng phó như thế nào nếu muốn mục tiêu của là đảm bảo sản lượng thực tế bằng sản lượng tiềm năng? Hãy giải thích và minh họa bằng đồ thị.

    Như vậy bài tập về mô hình IS LM có lời giải như sau:

    Chính phủ sẽ thực hiện chính sách tài khóa thắt chặt hoặc thắt chặt lại tiền tệ.

    Dạng 2: sử dụng phương trình đường thẳng IS, LM.

    Bài tập về mô hình IS LM ví dụ:

    C=150+0,7Yd; G=150; Ex=290; Im=0,14; MD=40+ 0,2Y-10i; T=20+0,2Y; I=80-12i; MS=200; P=1.

    Yêu cầu:

    1. Viết phương trình IS; LM. Tính lãi suất và sản lượng, biểu diễn trên biểu đồ các chỉ số ấy.

    2. Khi Chính phủ tăng chi tiêu thêm 60, sản lượng và lãi suất thay đổi như thế nào? Việc Chính phủ thực hiện chính sách trên đã gây ra tác động gì đối với nền kinh tế? Nếu không có tác động này thì mức sản lượng cao nhất có thể đạt được là bao nhiêu? Để đạt được mức sản lượng này thì Chính phủ phải có những biện pháp gì?

    Lời giải cho bài tập về mô hình IS LM ở dạng 2:

    1. Phương trình đường IS:AD=C+I+G+Ex-Im=656-12i+0,42Y

    Lãi suất và sản lượng là nghiệm của hệ PT IS và LM: Y=1034; i=4,68.

    1. Lãi suất và sản lượng cân bằng mới là nghiệm của hệ phương trình IS1 và LM: Y1=1107; i1=6,15.

    Nhận xét: G tăng, nền kinh tế tăng trưởng nhưng rơi vào lạm phát. 

    Hiện tượng thoái lui đầu tư với quy mô bằng 1137,65-1107=30,65.

    MS tăng=MS(E2)-MS(E1).

    --- Bài cũ hơn ---

  • Sử Dụng Phương Trình Ion Thu Gọn Để Giải Bài Tập Hóa
  • Các Dạng Bài Tập Hoá 11 Chương Sự Điện Li Cần Nắm Vững
  • Đề Kiểm Tra Học Kì 1 Hoá 11 Trắc Nghiệm
  • Đề Kiểm Tra 1 Tiết Hoá 11 Chương 1 Có Đáp Án
  • Bài Tập Vật Lý 11 – Chương Dòng Điện Không Đổi
  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

    --- Bài mới hơn ---

  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn (Tài Liệu Free)
  • Các Bài Toán Giải Bằng Phân Tích Cấu Tạo Số
  • Giải Toán 12 Bài 5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Của Hàm Số
  • Bài Tập Trắc Nghiệm Trang 32 Sbt Sinh Học 9: Trắc Nghiệm Trang 32 Chương Ii Nhiễm Sắc Thể Sbt Sbt Sinh Học 9
  • Soạn Bài : Những Câu Hát Than Thân
  • Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

    Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

    Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

    Cảm ơn các bạn.

    Phan Đức Minh – Lê Phúc Lữ

    --- Bài cũ hơn ---

  • Giải Bài Tập Sgk Công Nghệ Lớp 11 Bài 3: Thực Hành: Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Giải Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4 Ngắn Nhất: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển.
  • Soạn Văn Lớp 6 Bài Nghĩa Của Từ Ngắn Gọn Hay & Đúng Nhất
  • Bài Tập Trắc Nghiệm Chương 1 Hình 10 Có Lời Giải Chi Tiết

    --- Bài mới hơn ---

  • Dạng 4: Giải Bài Toán Bằng Cách Lập Phương Trình
  • Sách Giải Bài Tập Toán Lớp 11 Bài 4: Hai Mặt Phẳng Song Song (Nâng Cao)
  • Hai Mặt Phẳng Song Song
  • Giải Toán 11 Bài 4. Hai Mặt Phẳng Song Song
  • Giải Bài Tập 2 Mặt Phẳng Song Song
  • Trắc nghiệm lý thuyết hình học 10 chương 1

    Câu 1. Véctơ là một đoạn thẳng:

    A. Có hướng. B. Có hướng dương, hướng âm.

    C. Có hai đầu mút. D. Thỏa cả ba tính chất trên.

    Câu 2. Hai véc tơ có cùng độ dài và ngược hướng gọi là:

    A. Hai véc tơ bằng nhau.

    B. Hai véc tơ đối nhau.

    C. Hai véc tơ cùng hướng.

    D. Hai véc tơ cùng phương.

    Câu 3. Hai véctơ bằng nhau khi hai véctơ đó có:

    A. Cùng hướng và có độ dài bằng nhau.

    B. Song song và có độ dài bằng nhau.

    C. Cùng phương và có độ dài bằng nhau.

    D. Thỏa mãn cả ba tính chất trên.

    Câu 4. Nếu hai vectơ bằng nhau thì:

    A. Cùng hướng và cùng độ dài. B. Cùng phương.

    C. Cùng hướng. D. Có độ dài bằng nhau.

    Câu 5. Điền từ thích hợp vào dấu (…) để được mệnh đề đúng. Hai véc tơ ngược hướng thì …

    A. Bằng nhau.

    B. Cùng phương.

    C. Cùng độ dài.

    D. Cùng điểm đầu.

    Câu 13. Mệnh đề nào sau đây đúng:

    A. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương.

    B. Hai vectơ cùng phương với một vectơ thứ ba khác 0 thì cùng phương.

    C. Hai vectơ cùng phương với một vectơ thứ ba thì cùng hướng.

    D. Hai vectơ ngược hướng với một vectơ thứ ba thì cùng hướng.

    Câu 14. Chọn khẳng định đúng.

    A. Hai véc tơ cùng phương thì bằng nhau.

    B. Hai véc tơ ngược hướng thì có độ dài không bằng nhau.

    C. Hai véc tơ cùng phương và cùng độ dài thì bằng nhau.

    D. Hai véc tơ cùng hướng và cùng độ dài thì bằng nhau.

    Trắc nghiệm tổng hai véc tơ

    Câu 93. Cho tam giác ABC. Điểm M thỏa mãn MA + MB + CM = 0 thì điểm M là

    A. Đỉnh thứ tư của hình bình hành nhận AC và BC làm hai cạnh.

    B. Đỉnh thứ tư của hình bình hành nhận AB và AC làm hai cạnh.

    C. Đỉnh thứ tư của hình bình hành nhận AB và BC làm hai cạnh.

    D. trọng tâm tam giác ABC

    Trắc nghiệm hiệu của hai véc tơ

    Câu 9. Cho ba vectơ a b c , và đều khác vectơ – không. Trong đó hai vectơ a b, cùng hướng, hai vectơ a c, đối nhau. Khẳng định nào sau đây đúng ?

    A.Hai vectơ b và c cùng hướng.

    B.Hai vectơ b và c ngược hướng.

    C.Hai vectơ b và c đối nhau.

    D.Hai vectơ b và c bằng nhau.

    Câu 34. Cho tam giác ABC. Điểm M thỏa mãn MA + MB – MC =0 thì điểm M là:

    A. Đỉnh thứ tư của hình bình hành nhận AC và BC làm hai cạnh.

    B. Đỉnh thứ tư của hình bình hành nhận AB và AC làm hai cạnh.

    C. Đỉnh thứ tư của hình bình hành nhận AB và BC làm hai cạnh.

    D. Trọng tâm tam giác ABC.

    Câu 46. Cho tam giác ABC . Để điểm M thoả mãn điều kiện MA + MB – MC = 0 thì M phải thỏa mãn mệnh đề nào?

    A. M là điểm sao cho tứ giác ABMC là hình bình hành.

    B. M là trọng tâm tam giác ABC . C. M là điểm sao cho tứ giác BAMC là hình bình hành.

    D. M thuộc trung trực của AB .

    Trắc nghiệm tích của hai véc tơ với một số

    Câu 32: Cho tam giác ABC, tập hợp các điểm M sao cho độ dài MA + MB + MC = 6 là:

    A.một đường thẳng đi qua trọng tâm của tam giác ABC .

    B.đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 6 .

    C.đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 2 .

    D.đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 18

    Trắc nghiệm trục tọa độ và hệ trục tọa độ

    Câu 5: Mệnh đề nào sau đây đúng?

    A. Hai vectơ u = (2; 1) và v = (1;2) đối nhau.

    B. Hai vectơ u = (2; 1) và v = (1;2)đối nhau.

    C. Hai vectơ u = (2; 1) và v = (2;1)đối nhau.

    D. Hai vectơ u = (1;2) và v = (1;2) đối nhau.

    Câu 6: Trong hệ trục(O;i;j) , tọa độ của vec tơ i + j là:

    A.(-1;1) . B.(1;0) . C. (0;1) .

    D. (1;1)

    Câu 7: Trong mặt phẳng tọa độ Oxy cho A (5;2) ,B (10;8) . Tọa độ của vec tơ AB là:

    --- Bài cũ hơn ---

  • 200 Câu Trắc Nghiệm Toán 10 Chương 2 (Có Đáp Án): Tích Vô Hướng Của Hai Vectơ.
  • Bài Tập Trắc Nghiệm Hình Học 10 Chương 1 Có Đáp Án
  • 100 Câu Hỏi Trắc Nghiệm Đại Cương Về Hóa Học Hữu Cơ Có Đáp Án
  • Trắc Nghiệm Hóa Học Đại Cương
  • 45 Bài Tập Trắc Nghiệm Chương Nhóm Halogen Có Đáp Án
  • Bài Tập Phần Hình Học

    --- Bài mới hơn ---

  • Giải Bài Tập Trang 54 Sgk Toán 4 Bài 1, 2
  • Giải Toán Lớp 4 Trang 40, 41: Luyện Tập Phép Cộng Và Phép Trừ
  • Giải Bài Tập Trang 40, 41 Sgk Toán 4: Luyện Tập Phép Cộng Và Phép Trừ Giải Bài Tập Toán Lớp 4
  • Giải Bài Tập Trang 40, 41 Sgk Toán 4: Luyện Tập Phép Cộng Và Phép Trừ
  • Bài 1, 2, 3 Trang 86 Sgk Toán 4
  • Viết công thức tính chu vi P, tính diện tích S của mỗi hình theo các kích thước ghi trên hình vẽ:

    a) Nêu những đặc điểm giống nhau của :

    b) Nêu một đặc điểm khác nhau của :

    a) Vẽ hình vuông có cạnh là 4cm.

    Tính chu vi và diện tích của hình vuông đó.

    b) Vẽ hình chữ nhật có chiều dài 6cm, chiều rộng bằng 2/3 chiều dài.

    Tính chu vi và diện tích của hình chữ nhật đó.

    c) Một hình bình hành có độ dài đáy là 18cm, chiều cao bằng – độ dài đáy.

    Tính diện tích của hình bình hành đó.

    d) Hình thoi ABCD có độ dài đường chéo AC là 20cm, độ dài đường

    chéo BD bằng 3/5 đô dài đường chéo AC. Tính diên tích hình thoi ABCD.

    XEM THÊM BÀI TẬP VỀ ĐẠI LƯỢNG VÀ ĐO ĐẠI LƯỢNG- TOÁN LỚP 4 TẠI ĐÂY

    Khoanh vào chữ đặt trước câu trả lời đúng.

    Diện tích của phần tô đậm trong hình vẽ bên là :

    A.16 cm2 B.20 cm2 C.22 cm2 D.30 cm2

    A. 16 cm B.20 cm C.24 cm D. 26 cm

    b) P = (a + b) X 2 s = a X b

    HD : a) Có thể nêu một số đặc điểm chủ yếu và đã học như sau :

    Đều là hình tứ giác

    Đều có 4 góc vuông

    Đều có hai cặp cạnh đối diện song song và từng cặp cạnh đối diện bằng nhau

    Đều có các cạnh liên tiếp vuông góc với nhau.

    Nhận xét: Hình vuông được coi là hình chữ nhật đặc biệt có chiều dài bằng chiều rộng.

    Đều là hình tứ giác

    Đều có hai cặp cạnh đối diện song song và từng cặp cạnh đối diện bằng nhau.

    Nhận xét : Hình chữ nhật được coi là hình bình hành đặc biệt có 4 góc vuông.

    Đều là hình tứ giác

    Đều có các cặp cạnh đối diện song song và bằng nhau.

    Nhận xét: Hình vuông được coi là hình thoi đặc biệt có 4 góc vuông.

    Có thể nêu như sau :

    Hình vuông và hình chữ nhật khác nhau ở chỗ hình vuông có 4 cạnh bằng nhau, hình chữ nhật chỉ có hai chiều dài bằng nhau và hai chiều rộng bằng nhau.

    Hình chữ nhật khác hình bình hành ở chỗ : Hình chữ nhật có 4 góc vuông

    a) Chu vi hình vuông là :

    Diện tích hình vuông là :

    Đáp số: 16cm ; 16cm

    b) Chiều rộng của hình chữ nhật là :

    Chu vi hình chữ nhật là :

    Diện tích hình chữ nhật là :

    c) Chiều cao của hình bình hành là :

    Diện tích hình bình hành là :

    Đáp số: 180 cm2

    d) Độ dài đường chéo BD là :

    Diện tích hình thoi ABCD là :

    Diện tích của phần tô đậm trong hình vẽ là 22crm 2. Vậy khoanh vào c.

    Chú ý : Trên hình vẽ, diện tích phần tô đậm là hiệu diện tích của hai

    hình chữ nhật : hình chữ nhật có chiều dài 7cm, chiều rộng 6cm,

    diện tích là 7 X 6 = 42 (cm 2) và hình chữ nhật có chiều dài là :

    7 – 1 – 1 = 5 (cm), chiều rộng là : 6 – 1 – 1 = 4 (cm), diện tích là :

    5X 4 = 20 (cm 2). Như vậy, diện tích phần tô đậm là : 42 – 20 = 22 (cm 2).

    Chu vi của hình đã cho là 20cm.

    Vậy khoanh vào B.

    Chú ý : Có thể giải thích bằng các cách khác nhau, chẳng hạn, có thể coi hình bên là do một hình chữ nhật có chiều dài 7cm, chiều rộng 3cm cắt đi một hình chữ nhật ở góc phải.

    Như thế, chu vi của hình đã cho trước bằng chu vi của hình chữ nhật có chiều dài 7cm, chiều rộng 3cm, do đó chu vi của hình đã cho trước là : (7 + 3) X 2 = 20 (cm).

    --- Bài cũ hơn ---

  • Hướng Dẫn Giải Bài Toán Lớp 4 Chuyên Đề “hình Học”
  • Giải Vở Bài Tập Toán 4 Bài 55 : Mét Vuông
  • Sách Giải Vở Bài Tập Toán Lớp 4 Trang 32 Tập 2 Đúng Nhất Bapluoc.com
  • Giải Cùng Em Học Toán Lớp 4 Tập 2
  • Giải Bài Tập Trang 48 Sgk Toán 4 Bài 1, 2, 3, 4, 5
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100