Giải Phương Trình Mũ Logarit Hay Và Khó Lớp 12

--- Bài mới hơn ---

  • Bài Tập Trắc Nghiệm Phương Trình Mũ Và Logarit File Word
  • Trắc Nghiệm Lượng Giác (Kèm Lời Giải)
  • Chương Viii: Phương Trình Lượng Giác Không Mẫu Mực
  • Giáo Án Chủ Đề Tự Chọn 11 Tiết 7: Phương Trình Lượng Giác Không Mẫu Mực
  • Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao)
  • c. (m in (dfrac{5}{2};6))

    C. Lời giải

    Đáp án câu 1

    a

    Gợi ý

    + Thay lần lượt giá trị của (m) và và kiểm tra xem phương trình có nghiệm trong (left( { – 1;0} right)) hay không.

    + Tính các giá trị (fleft( 0 right),fleft( { – 1} right)) rồi kiểm tra (fleft( 0 right).fleft( { – 1} right) < 0) thì ta kết luận phương trình có nghiệm trong (left( { – 1;0} right)).

    Đáp án chi tiết

    – Từ các đáp án đã cho, ta thấy giá trị $m=2$ không thuộc đáp án C nên ta thử $m=2$ có thỏa mãn bài toán hay không sẽ loại được đáp án. 

    Thử với $m=2$ ta được phương trình : ({12^x} + {2.3^x} – 2 = 0;) ( f( – 1) = dfrac{{ – 5}}{4};) (f(0) = 1) ( Rightarrow f(0).f( – 1) < 0)

    Do đó, phương trình có nghiệm trong khoảng $(-1;0)$, mà đáp án C không chứa $m=2$ nên loại C.

    – Lại có giá trị $m=3$ thuộc đáp án C nhưng không thuộc hai đáp án A và D nên nếu kiểm tra $m=3$ ta có thể loại tiếp được đáp án.

    Mà hàm số này đồng biến khi $m=3$ nên $f(x)<0,forall xin (-1;0)$, suy ra phương trình $f(x)=0$ sẽ không có nghiệm trong $(-1;0)$, loại B.

    – Cuối cùng, ta thấy giá trị $m=1$ thuộc đáp án A và không thuộc đáp án D nên ta sẽ thử $m=1$ để loại đáp án.

    Thử với $m=1$ ta được phương trình : ({12^x} + {3.3^x} – 1 = 0;) (f( – 1) = dfrac{{ – 11}}{{12}};,f(0) = 3) ( Rightarrow f(0).f( – 1) < 0)

    Do đó phương trình $f(x)=0$ sẽ có nghiệm trong $(-1;0)$ nên loại D và chọn A.

    Đáp án cần chọn là: a

    Đáp án câu 2

    a

    Gợi ý

    Giải phương trình mũ bằng cách đưa về cùng cơ số là biến đổi về dạng ${a^{fleft( x right)}} = {a^{gleft( x right)}} Leftrightarrow fleft( x right) = gleft( x right)$

    Đáp án chi tiết

    ${4^{2{rm{x}} + 5}} = {2^{2 – x}} Leftrightarrow {2^{4{rm{x}} + 10}} = {2^{2 – x}} Leftrightarrow 4{rm{x}} + 10 = 2 – x Leftrightarrow 5{rm{x}} =  – 8 Leftrightarrow x = dfrac{{ – 8}}{5}$

    Đáp án cần chọn là: a

    Đáp án câu 3

    a

    Gợi ý

    Giải phương trình mũ bằng phương pháp đưa về cùng cơ số bằng cách đưa (1 = {2^0}.)

    Đáp án chi tiết

    ({2^{2{x^2} – 7x + 5}} = 1 Leftrightarrow {2^{2{x^2} – 7x + 5}} = {2^0} Leftrightarrow 2{x^2} – 7x + 5 = 0 Leftrightarrow left[ begin{array}{l}x = 1\x = dfrac{5}{2}end{array} right..)

    Vậy phương trình đã cho có 2 nghiệm

    Đáp án cần chọn là: a

    --- Bài cũ hơn ---

  • Chuyên Đề Bất Phương Trình
  • Cách Giải Phương Trình Chứa Căn, Bất Phương Trình Chứa Căn
  • Tổng Hợp Đề Kiểm Tra 1 Tiết Toán 11 Chương 1 Đại Số (Có Đáp Án)
  • Tuyển Chọn Bài Tập Lượng Giác Lớp 10 Cơ Bản
  • Chiến Thắng 30/4 Mở Trang Mới Trong Sự Nghiệp Xây Dựng Và Bảo Vệ Tổ Quốc
  • Phương Trình Trùng Phương Lớp 9: Lý Thuyết, Cách Giải, Các Dạng Bài Tập

    --- Bài mới hơn ---

  • Giải Phương Trình Bậc 2 Trong Java
  • Trắc Nghiệm Phương Trình Lượng Giác Đối Xứng, Phản Đối Xứng
  • Cách Giải Phương Trình Chứa Ẩn Dưới Dấu Căn
  • Phương Trình Chứa Ẩn Dưới Dấu Căn
  • Sáng Kiến Kinh Nghiệm Kỹ Năng Giải Phương Trình Chứa Ẩn Dưới Dấu Căn “chương 3, Đại Số 10 Cb”
  • Số lượt đọc bài viết: 16.843

    Phương trình trùng phương theo định nghĩa là phương trình bậc ( 4 ) có dạng :

    Chúng ta nhận thấy đây thực chất là phương trình bậc ( 2 ) với ẩn là ( x^2 )

    Số nghiệm của phương trình trùng phương

    Cho phương trình trùng phương có dạng:

    ( ax^4+bx^2+c=0 ) với ( a neq 0 ).

    • Phương trình trùng phương có 1 nghiệm (Leftrightarrow left{begin{matrix} c=0\ frac{b}{a} leq 0 end{matrix}right.) và nghiệm đó ( = 0 )
    • Phương trình trùng phương có 3 nghiệm phân biệt (Leftrightarrow left{begin{matrix} c=0 \frac{b}{a} <0 end{matrix}right.) và trong đó có một nghiệm ( = 0 )

    Ví dụ về phương trình trùng phương lớp 9

    Cách giải :

    Thí dụ 2: Cho phương trình ( mx^4 -2(m-1)x^2+m-1 =0 )

    Tìm ( m ) để phương trình

    Ta có ( Delta’ = (m-1)^2-m(m-1)=1-m )

    Áp dụng công thức trên ta có :

    • Để phương trình có nghiệm duy nhất thì (left{begin{matrix} m-1=0\ frac{m-1}{m} geq 0 end{matrix}right. Leftrightarrow m=1)

    Các bước giải phương trình trùng phương lớp 9

    Để giải phương trình ( ax^4 +bx^2+c =0 ) với ( a neq 0 ) ta làm theo các bước sau đây:

    Ví dụ 1:

    • Bước 1: Đặt ( t=x^2 ). Điều kiện ( tgeq 0 )
    • Bước 2: Giải phương trình bậc hai ( at^2+bt +c =0 ) tìm ra ( t )
    • Bước 3: Với mỗi giá trị của ( t ) thỏa mãn điều kiện ( tgeq 0 ), giải phương trình ( x^2=t )
    • Bước 4: Kết luận nghiệm của phương trình ban đầu

    Cách giải:

    ***Chú ý: Đối với các bài toán phương trình trùng phương lớp 9 thì ta cần thực hiện đầy đủ các bước trên, còn các bài toán phương trình trùng phương lớp 12 thì ta có thể bỏ đi bước thứ nhất để lời giải nhanh gọn

    Giải phương trình ( x^4 -5x^2+4 =0 )

    Đặt ( t= x^2 ). Điều kiện ( t geq 0 )

    Khi đó phương trình đã cho trở thành :

    (Leftrightarrow (t-1)(t-4)=0 Leftrightarrow left[begin{array}{l}t=1 \t=4 end{array}right.)

    (left[begin{array}{l}x^2=1 \x^2=4 end{array}right. Leftrightarrow left[begin{array}{l} x=pm 1\ x=pm 2end{array}right.)

    Ví dụ 2:

    Vậy phương trình đã cho có ( 4 ) nghiệm phân biệt : ( x= -1;1;-2;2 )

    Một số phương trình trùng phương biến đổi (xrightarrow frac{1}{x}) hoặc các biểu thức chứa căn thì đầu tiên ta cần tìm điều kiện của phương trình trùng phương rồi mới tiến hành giải

    Cách giải:

    Giải phương trình:

    (frac{1}{x^4}-frac{5}{x^2}+6=0)

    Điều kiện: ( x neq 0 )

    Phương trình đã cho tương đương với :

    ((frac{1}{x^2}-3)(frac{1}{x^2}-2)=0 Leftrightarrow left[begin{array}{l} frac{1}{x^2}=3\ frac{1}{x^2}=2end{array}right.)

    (Leftrightarrow left[begin{array}{l} frac{1}{x}=pm sqrt{3}\ frac{1}{x}=pm sqrt{2}end{array}right.)

    (Leftrightarrow left[begin{array}{l} x=pm frac{1}{sqrt{3}}\ x=pm frac{1}{sqrt{2}}end{array}right.) ( thỏa mãn )

    Vậy phương trình đã cho có ( 4 ) nghiệm phân biệt (x=-frac{1}{sqrt{2}};-frac{1}{sqrt{3}};frac{1}{sqrt{2}};frac{1}{sqrt{3}})

    Giải phương trình số phức bậc 4 trùng phương

    Đây là một dạng phương trình trùng phương nâng cao trong chương trình Toán lớp 12. Để giải bài toán này thì ta cần nhắc lại một số kiến thức về số phức

    • Biểu thức dạng ( a+bi ) với (a;b in mathbb{R}) và ( i^2=-1 ) được gọi là một số phức với ( a ) là phần thực và ( b ) là phần ảo
    • Phương trình bậc hai ( ax^2+bx+c =0) với ( Delta <0 ) có hai nghiệm phức là (frac{-bpm isqrt{Delta}}{2a})

    Như vậy một phương trình bậc ( 4 ) trùng phương luôn có đủ ( 4 ) nghiệm. Đó có thể là nghiệm thực, nghiệm kép và nghiệm phức

    Ví dụ 3:

    Để giải phương trình số phức bậc 4 trùng phương, ta tiến hành các bước sau đây :

    Cách giải:

    • Bước 1: Đặt ( t=x^2 ). Điều kiện ( tgeq 0 )
    • Bước 2: Giải phương trình bậc hai ( at^2+bt +c =0 ) tìm ra ( t ) (tìm cả nghiệm phức)
    • Bước 3: Với mỗi giá trị của ( t [/latex, giải phương trình [latex] x^2=t )
    • Bước 4: Kết luận nghiệm của phương trình ban đầu

    Giải phương trình : ( x^4-x^2-2 =0 )

    Phương trình đã cho tương đương với :

    (Leftrightarrow left[begin{array}{l} x^2=-1 \x^2=2 end{array}right.)

    Vậy phương trình đã cho có ba nghiệm : (-sqrt{2};sqrt{2};i)

    Tu khoa lien quan:

    • phương trình trùng phương lớp 12
    • giải bất phương trình trùng phương
    • phương trình trùng phương nâng cao
    • phương trình trùng phương nâng cao
    • phương trình trùng hợp caprolactam
    • các bước giải phương trình trùng phương
    • điều kiện của phương trình trùng phương
    • thuật toán giải phương trình trùng phương
    • phương trình trùng phương vô nghiệm khi nào

    Please follow and like us:

    --- Bài cũ hơn ---

  • Cách Tính Delta Và Delta Phẩy Phương Trình Bậc 2
  • Phương Trình Lượng Giác Bậc Một Theo Sin ,cos
  • Giải Phương Trình Chứa Dấu Giá Trị Tuyệt Đối
  • Cách Giải Phương Trình Chứa Ẩn Dưới Dấu Giá Trị Tuyệt Đối
  • Phương Trình Chứa Ẩn Trong Dấu Giá Trị Tuyệt Đối
  • Các Phương Pháp Giải Phương Trình

    --- Bài mới hơn ---

  • Cách Giải Phương Trình Bậc 2 Và Tính Nhẩm Nghiệm Pt Bậc 2
  • Tổng Hợp Các Phương Pháp Giải Phương Trình Và Hệ Phương Trình Môn Toán
  • Hướng Dẫn Học Sinh Giải Phương Trình Toán Bằng Máy Tính Casio
  • Công Bố Kết Quả Bình Chọn Giải Thưởng Y Tế Thông Minh Năm 2022
  • Giới Thiệu Nhóm Sản Phẩm Bình Chọn Giải Thưởng Y Tế Thông Minh: “báo Cáo Sự Cố”
  • 1. Phương pháp giải phương trình bậc ba.

    Xét phương trình bậc ba dạng tổng quát bao giờ cũng đưa về được phương trình bậc ba dạng chính tắc bằng cách chia hai vế của cho để được và đặt thì ta sẽ thu được .

    Xét biểu thức .

    2. Phương pháp giải một số phương trình bậc bốn dạng đặc biệt.

    a) Phương trình trùng phương : .

    b) Phương trình dạng . c) Phương trình dạng với .

    Đưa phương trình về dạng và đặt thì ta được phương trình bậc hai theo ẩn .

    d) Phương trình dạng với .

    Đưa phương trình về dạng

    Bằng cách chia hai vế cho và đặt ta thu được phương trình bậc hai theo

    e) Phương trình đối xứng bậc bốn, phương trình hệ số phản hồi.

    Phương trình trên được gọi là phương trình hệ số phản hồi nếu .

    Khi đó bằng cách chia hai vế cho và đặt ẩn phụ thì ta được phương trình bậc hai theo ẩn

    3. Phương pháp sử dụng một số hằng đẳng thức.

    Ví dụ : Giải phương trình

    Để ý hằng đẳng thức

    Kết luận : Tập nghiệm của phương trình là

    4. Phương pháp đặt ẩn phụ.

    Ví dụ : Giải phương trình

    Điều kiện .

    Từ đó ta có hệ phương trình

    Kết luận : Tập nghiệm của phương trình là

    5. Phương pháp lượng giác hóa (phép thế lượng giác) 6. Phương pháp dùng tính đơn điệu của hàm số.

    Ví dụ : Giải phương trình

    Đặt

    Cộng vế theo vế hai phương trình này :

    Xét hàm số , dễ thấy hàm này đồng biến trên nên

    Kết luận : Tập nghiệm của phương trình là

    7. Phương pháp đánh giá bằng bất đẳng thức.

    Ví dụ : Giải phương trình

    Điều kiện .

    Đẳng thức xảy ra khi

    Kết luận : Tập nghiệm của phương trình là

    8. Phương pháp dùng lượng liên hợp.

    Phương pháp này dùng được cho những phương trình chứa căn thức và khi biết trước nghiệm của phương trình.

    Một số hằng đẳng thức dùng để trục căn thức :

    Ví dụ : Giải phương trình

    Phương trình tương đương :

    Mà dễ thấy rằng

    Nên .

    Kết luận : Tập nghiệm của phương trình là

    Chuyên đề PT-HPT Diễn đàn Mathscope.

    --- Bài cũ hơn ---

  • Các Dạng Hệ Phương Trình Đặc Biệt
  • Giải Phương Trình Bậc Hai (Bản Đầy Đủ)
  • Học Cách Giải Bất Phương Trình Từ Cơ Bản Đến Nâng Cao
  • Bai Giang Phuong Trinh Vi Phan
  • Trắc Nghiệm Phương Trình Lượng Giác Lớp 11 Có Lời Giải Chi Tiết
  • Các Dạng Bài Tập Este Và Phương Pháp Giải Bài Tập Este Khó

    --- Bài mới hơn ---

  • Bài 1 Este Giải Bài Tập Sách Giáo Khoa
  • Phương Pháp Giải Bài Tập Thủy Phân Este Đa Chức
  • Bài Tập Este Cơ Bản Phân Dạng Và Đáp Án Chi Tiết
  • Giải Bài Tập Hóa 12 Bài 4: Luyện Tập: Este Và Chất Béo
  • Cách Giải Bài Tập Về Phản Ứng Thủy Phân Este Hay, Chi Tiết
  • Số lượt đọc bài viết: 4.944

    Để giải được các dạng bài tập este, các bạn cần nắm vững kiến thức lý thuyết cũng như công thức tổng quát của este, cụ thể như sau:

    Các dạng bài tập este trong đề thi đại học

    Phương pháp giải

      Phản ứng đốt cháy 1 este

      • Este no, đơn chức, mạch hở
        • CTTQ: (C_{n}H_{2n}O_{2}, n geq 2)
        • Phản ứng cháy:
        • (C_{n}H_{2n}O_{2} + frac{3n -2}{2} O_{2} rightarrow nCO_{2} + n_{H_{2}O})
        • (n_{CO_{2}} = n_{H_{2}O})
        • (n_{O_{2}} = frac{3}{2}n_{CO_{2}} – n_{este})
      • Este không no, đơn chức, mạch hở có 1 liên kết C = C
      • Este không no, đơn chức, có k liên kết C=C trong phân tử
      • Este không no, có từ 2 liên kết C=C trở lên trong phân tử
        • (C_{n}H_{2n+2-2k}O_{m} + O_{2} rightarrow nCO_{2} + (n+1-k)H_{2}O)
        • (n_{este} = frac{n_{CO_{2}} – n_{H_{2}O}}{k-1})
      • Este bất kì
        • CTTQ: (C_{x}H_{y}O_{z}). x, y, z nguyên dương, (x geq 2, z geq 2)
        • Phản ứng cháy: (C_{x}H_{y}O_{z} + O_{2} rightarrow xCO_{2} + frac{y}{2}H_{2}O)
        • Áp dụng các định luật bảo toàn khối lượng, định luật bảo toàn nguyên tố… để giải bài toán.
      Bài toán đốt cháy hỗn hợp các este

      • Bài toán đốt cháy 2 este đồng phân
          Các este đồng phân (Rightarrow) có cùng CTPT, cùng KLPT.
      • Bài toán đốt cháy 2 este tạo thành từ cùng 1 axit, 2 ancol đồng đẳng hoặc cùng 1 ancol, 2 axit đồng đẳng
        • Các este này sẽ có cùng dạng CTTQ (Rightarrow). Đặt CTPT trung bình để viết phương trình phản ứng, đưa về bài toán 1 este.
        • Số liên kết pi trong phân tử: (k = frac{2n_{C} – n_{H} + 2}{2})
      • Bài toán đốt cháy hỗn hợp nhiều este có cùng CTTQ
        • Đặt CTPT trung bình
        • Áp dụng các định luật bảo toàn để giải bài toán.

    Ví dụ 1: Đốt cháy hoàn toàn 1,76 gam một este X thu được 3,52 gam (CO_{2}) và 1,44 gam (H_{2}O). Xác định công thức phân tử của X?

    (n_{CO_{2}} = frac{3,52}{44} = 0,08, (mol))

    Do (n_{CO_{2}} = n_{H_{2}O} Rightarrow) X có độ bất bão hòa của phân tử (Delta = 1)

    X là este no, đơn chức (Rightarrow) X dạng (C_{n}H_{2n}O_{2})

    Vậy công thức phân tử của X là: (C_{4}H_{8}O_{2})

    Dạng 2: Bài toán về phản ứng thuỷ phân este

    • Thuỷ phân một este đơn chức

        Trong môi trường axit: Phản ứng xảy ra thuận nghịch

          (RCOOR’ + HOH rightleftharpoons RCOOH + R’OH)
    • Trong môi trường kiềm (phản ứng xà phòng hoá): Phản ứng một chiều, cần đun nóng

        (RCOOR’ + NaOH overset{t^{circ}}{rightarrow}RCOOH + R’OH)
    • Thủy phân este đa chức

    Phương pháp giải

    ((RCOO)_{n}R’ + nNaOH rightarrow nRCOONa + R'(OH)_{n})

        Có thể là các axit khác nhau

        • Este tạo thành từ axit đa chức (n chức) và ancol đơn chức: (R(COOR’)_{n})
        • Este tạo thành từ axit đa chức (n chức) và ancol đa chức (m chức): (R_{m}(COOR’)_{n.m}R’_{n}). Khi n = m thành (R(COOR’)nR’ rightarrow) este vòng
        • Este no, 2 chức, mạch hở: (C_{n}H_{2n-2}O_{4})
        • Nếu T = 2 (Rightarrow) Este có 2 chức, T = 3 (Rightarrow) Este có 3 chức…

    Ví dụ 2: Muốn thuỷ phân 5,6 gam hỗn hợp etyl axetat và etyl fomiat (etyl fomat) cần 25,96 ml NaOH 10% (D = 1,08 g/ml). Thành phần % khối lượng của etyl axetat trong hỗn hợp là bao nhiêu ?

    Đặt x là số mol (CH_{3}COOC_{2}H_{5}) và y là số mol (HCOOC_{2}H_{5}).

    Phương trình phản ứng:

    (CH_{3}COOC_{2}H_{5} + NaOH rightarrow CH_{3}COONa + C_{2}H_{5}OH) (1)

    (HCOOC_{2}H_{5} + NaOH rightarrow HCOONa + C_{2}H_{5}OH) (2)

    Theo giả thiết và các phản ứng ta có hệ phương trình :

    Ví dụ 3: Hoàn thành sơ đồ phản ứng sau:

    Các dạng bài tập về este lipit trong đề thi đại học

    Dạng 1: Phản ứng thủy phân lipit trong môi trường axit

    Dạng 2: Phản ứng xà phòng hóa của lipit

    Khi đun nóng với dung dịch kiềm (NaOH hoặc KOH) thì tạo ra glixerol và hỗn hợp muối của các axit béo. Muối natri hoặc kali của các axit béo chính là xà phòng.

    Phản ứng của chất béo với dung dịch kiềm được gọi là phản ứng xà phòng hóa. Phản ứng xà phòng hóa xảy ra nhanh hơn phản ứng thủy phân trong môi trường axit và không thuận nghịch.

    • Chỉ số xà phòng hóa: là số mg KOH dùng để xà phòng hóa hoàn toàn 1 gam lipit (tức là để trung hòa axit sinh ra từ sự thủy phân 1 gam lipit).
    • Chỉ số axit: số mg KOH dùng để trung hòa axit tự do có trong 1 mg lipit.

    (Rightarrow m_{C_{17}H_{35}COONa} = 720kg)

    Khối lượng chất béo là : (frac{702,63.100}{89} = 789,47kg)

    Tu khoa lien quan:

    • bài tập este cơ bản
    • bài tập este violet
    • bài tập este đa chức
    • bài tập quy đổi este
    • bài tập lý thuyết este
    • bài tập este hay và khó
    • bài tập phản ứng este hóa
    • bài tập phản ứng este hóa
    • phương pháp giải bài tập este khó
    • các dạng bài tập este lipit có lời giải
    • bài tập trắc nghiệm este lipit có đáp án
    • các dạng bài tập este trong đề thi đại học

    Please follow and like us:

    --- Bài cũ hơn ---

  • Phương Pháp Giải Bài Tập Phản Ứng Este Hóa
  • Học Và Giải Bài Tập Hóa Học Lớp 12
  • Giải Hóa Lớp 12 Bài 1: Este
  • Giải Bài Tập Sbt Hóa 12 Bài 4: Luyện Tập: Este Và Chất Béo
  • Giải Bài Tập Sgk Bài 4: Luyện Tập: Este Và Chất Béo
  • Các Phương Pháp Giải Hệ Phương Trình

    --- Bài mới hơn ---

  • Phương Trình Và Hệ Phương Trình
  • Cách Giải Bài Tập Về Phương Trình Trạng Thái Của Khí Lí Tưởng Hay, Chi Tiết
  • Giải Bài Tập Sgk Bài 31: Phương Trình Trạng Thái Của Khí Lí Tưởng
  • Giải Bài Tập Phương Trình Mặt Phẳng
  • Phương Pháp Đặt Ẩn Phụ Trong Phương Trình Mũ
  • 1. Phương pháp giải hệ phương trình bậc hai hai ẩn.

    Dạng tổng quát

    a) Nếu một trong hai phương trình là bậc nhất thì dễ dàng giải được hệ bằng phương pháp thế. b) Nếu một trong hai phương trình là thuần nhất bậc hai, chẳng hạn . Khi đó phương trình thứ nhất có dạng , phương trình này cho phép tính được . c) Hệ đẳng cấp bậc hai, tức là . Bằng cách khử đi hệ số tự do ta sẽ tìm ra được một phương trình thuần nhất bậc hai để tìm tỉ số d) Trong nhiều trường hợp ta có thể áp dụng phương pháp “tịnh tiến nghiệm” bằng cách đưa vào các ẩn mới (với là các ẩn). Ta sẽ tìm để khi khai triển thì các hạng tử bậc nhất ở cả hai phương trình của hệ đều bị triệt tiêu. Từ đó có hệ đẳng cấp theo mà ta đã biết cách giải.

    Đặt . Hệ trở thành :

    Vậy ta có hệ .

    Dễ dàng giải được hệ này.

    2. Phương pháp giải hệ phương trình đối xứng.

    a) Hệ phương trình đối xứng loại I.

    Cách giải chung là đặt ẩn phụ .

    b) Hệ phương trình đối xứng loại II

    Cách giải chung là trừ vế theo vế hai phương trình để thu được nhân tử chung .

    c) Hệ phương trình đối xứng ba ẩn.

    Dạng tổng quát

    Nếu ba số thỏa mãn thì chúng là ba nghiệm của phương trình .

    3. Hệ phương trình hoán vị.

    Dạng tổng quát

    Với thường là các hàm đơn điệu (trên một khoảng nào đó)

    Một số định lí :

    a) Nếu là các hàm đồng biến trên và là nghiệm (trên ) của hệ thì .

    b) Nếu là các hàm nghịch biến trên và là nghiệm (trên ) của hệ thì với lẻ, ta có .

    c) Nếu nghịch biến và đồng biến trên tập là là nghiệm (trên ) của hệ thì với chẵn, ta có và .

    Vì .

    4. Phương pháp dùng tính đơn điệu của hàm số.

    Phương pháp này chủ yếu dựa vào định lí sau :

    Phương trình thứ nhất có thể viết thành :

    Thay vào phương trình sau :

    Vậy

    5. Phương pháp đặt ẩn phụ.

    Ví dụ : Giải hệ phương trình

    Điều kiện

    Cộng vế theo vế hai phương trình :

    Trừ vế theo vế hai phương trình :

    Vậy nếu ta đặt

    Thì ta có hệ

    Từ đó dễ dàng tìm được nghiệm của hệ ban đầu.

    6. Phương pháp đánh giá bằng bất đẳng thức.

    “Chất bất đẳng thức” của hệ này nằm ở phương trình thứ hai.

    Điều kiện

    7. Phương pháp biến đổi đẳng thức. a) Đưa về phương trình tích.

    Ta dễ dàng giải được hệ này.

    b) Đưa về phương trình thuần nhất.

    Nhận thấy vế trái của có bậc ba và vế phải của có bậc . Để đưa thành một phương trình thuần nhất (thuần nhất bậc ba) thì ta cần nhân vào vế phải một biểu thức bậc .

    Dễ dàng giải tiếp hệ này.

    8. Phương pháp lượng giác hóa (phép thế lượng giác) 9. Phương pháp hệ số bất định.

    Ví dụ : Giải hệ phương trình

    Mục đích ở đây là ta sẽ tạo ra một phương trình mà có thể tính được ẩn này theo ẩn kia.

    Ta cần phối hợp hai phương trình của hệ để tạo một phương trình bậc hai có ẩn là .

    Từ đó được phương trình .

    Chuyên đề PT-HPT Diễn đàn Mathscope

    --- Bài cũ hơn ---

  • Giải Hệ Phương Trình Không Mẫu Mực Bằng Phương Pháp Thế
  • Hệ Phương Trình Không Mẫu Mực
  • Rèn Kĩ Năng Giải Bài Toán Bằng Cách Lập Phương Trình Cho Học Sinh Lớp 8
  • Giải Bài Toán Bằng Phương Trình Ion
  • Su Dung Phuong Trinh Ion Thu Gon
  • Các Phương Pháp Giải Phương Trình Lượng Giác

    --- Bài mới hơn ---

  • Phương Trình Lượng Giác Có Điều Kiện
  • Chuyên Đề Hoán Vị, Chỉnh Hợp Và Tổ Hợp
  • Bộ Đề Kiểm Tra 1 Tiết Môn Toán Lớp 11
  • Chuyên Đề: Giải Phương Trình Nghiệm Nguyên
  • Lý Thuyết Hệ Phương Trình Có Cấu Trúc Đặc Biệt Toán 10
  • Chương I: Phương trình lượng giác cơ bản và một số phương trình lượng giác thường gặp Để giải 1 PTLG , nói chung ta tiến hành theo các bước sau: Bước 1: Đặt điều kiện để phương trình có nghĩa. Các điều kiện ấy bao hàm các điều kiện để căn có nghĩa,phân số có nghĩa, biểu thức có nghĩa. Ngoài ra trong các PTLG có chứa các biểu thức chứa va thì cần điều kiện để và có nghĩa. Bước 2: Bằng phương pháp thích hợp đưa các phương trình đã cho về một trong các phương trình cơ bản . Bước 3: Nghiệm tìm được phải đối chiếu với điều kiện đã đặt ra. Những nghiệm nào không thoả mãn điều kiện ấy thì bị loại. 1.1-Phương trình lượng giác cơ bản 1.1.1- Định nghĩa: Phương trình lượng giác là phương trình chứa một hay nhiều hàm số lượng giác . 1.1.2- Các phương trình lượng giác cơ bản. a) Giải và biện luận phương trình (1) Do nên để giải phương trình (1) ta đi biện luận theo các bước sau -Khả năng 1: Nếu m được biểu diễn qua sin của góc đặc biệt ,giả sử khi đó phương trình sẽ có dạng đặc biệt. -Khả năng 2: Nếu m không biểu diễn được qua sin của góc đặc biệt khi đó đặt m= . Ta có: Như vậy ta có thể kết luận phương trình có 2 họ nghiệm Đặc biệt ta cần phải nhớ được các giá trị của các cung đặc biệt như vì sau khi biến đổi các bài toán thương đưa về các cung đặc biệt. Ví dụ 1: Giải phương trình Giải: Ta nhận thấy không là giá trị của cung đặc biệt nào nên ta đặt = Khi đó ta có: Vậy phương trình có 2 họ ngiệm Ví dụ 2: Giải phương trình Giải: Do nên Vậy phương trình có hai họ nghiệm . b) Giải và biện luận phương trình lượng giác Ta cũng đi biện luận (b) theo m Bước 1: Nếu phương trình vô nghiệm . Bước 2: Nếu ta xét 2 khả năng: -Khả năng 1: Nếu được biểu diễn qua của góc đặc biệt, giả sử góc. Khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua của góc đặc biệt khi đó đặt = .Ta có: Như vậy ta có thể kết luận phương trình có 2 họ nghiệm Ví Dụ Minh Hoạ. Ví dụ 1: Giải phương trình sau: Giải: Do nên Vậy phương trình có 2 họ nghiệm Ví dụ 2: Giải phương trình: Giải: Vì và không là giá trị của cung đặc biệt nên tồn tại góc sao cho Ta có: Vậy phương trình có hai họ nghiệm . c) Giải và biện luận phương trình lượng giác Ta cũng biện luận phương trình (c) theo các bước sau: Bước 1: Đặt điều kiện Bước 2: Xét 2 khả năng -Khả năng 1: Nếu được biểu diễn qua tan của góc đặc biệt , giả sử khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua tan của góc đặc biệt , khi đó đặt = ta được Nhận xét: Như vậy với mọi giá trị của tham số phương trình luôn có nghiệm Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình Giải : Do nên ta có: Vậy phương trình có 1 họ nghiệm. Ví dụ 2: Giải phương trình Giải: Điều kiện: Do không thể biểu diễn được qua của góc đặc biệt nên ta đặt . Từ đó ta có Vậy phương trình có một họ nghiệm. d) Giải và biện luận phương trình lượng giác Ta cũng đi biện luận theo Bước1: Đặt điều kiện Bước 2: Xét 2 khả năng -Khả năng 1: Nếu được biểu diễn qua cot của góc đặc biệt , giả sử khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua cot của góc đặc biệt , khi đó đặt = ta được Nhận xét: Như vậy với mọi giá trị của tham số phương trình (d) luôn có nghiệm. Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình sau: (1) Giải: Điều kiện (*) Ta có: (1) Họ nghiệm trên thoả mãn điều kiện (*) Vậy phương trình có 1 họ nghiệm. Ví dụ 2: Giải phương trình Giải: Ta nhận thấy nên ta có Vậy phương trình có 1 họ nghiệm . Lưu ý: Không được ghi hai loại đơn vị ( radian hoặc độ ) trong cùng một công thức. 1.2- Một số phương trình lượng giác thường gặp. 1.2.1- Phương trình bậc hai đối với một hàm số lượng giác Dạng 1: (1) Cách giải: Đặt , điều kiện Đưa phương trình (1) về phương trình bậc hai theo , giải tìm chú ý kết hợp với điều kiện rồi giải tìm Dạng 2: (2) Cách giải: Đặt điều kiện ta cũng đưa phương trình (2) về phương trình bậc hai theo , giải tìm rồi tìm Dạng 3: (3) Cách giải: Điều kiện Đặt ta đưa phương trình (3) về phương trình bậc hai theo , chú ý khi tìm được nghiệm cần thay vào điều kiện xem thoả mãn hay không Dạng 4: (4) Cách giải: Điều kiện Đặt . Ta cũng đưa phương trình (4) về phương trình bậc hai theo ẩn t. Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình (1) Giải: Phương trình (1) Vậy phương trình có 3 họ nghiệm. Ví dụ 2: Giải phương trình: (2) Giải: Điều kiện Ta có: Ta thấy không thoả mãn điều kiện. Do đó (*) Vậy phương trình có 2 họ nghiệm. Bài tập: Bài 1: Giải phương trình: Bài 2 Giải phương trình: Bài 3: Giải phương trình: Bài 4: Giải phương trình: Bài 5: Giải phương trình: Bài 6: Giải phương trình: Bài 7: Giải phương trình: Bài 8: Giải phương trình Bài 9: Giải phương trình 1.2.2- Phương trình bậc nhất đối với a)Định nghĩa: Phương trình trong đó a, b, c và được gọi là phương trình bậc nhất đối với b) Cách giải. Ta có thể lựa chọn 1 trong 2 cách sau: Cách 1: Thực hiện theo các bước Bước 1:Kiểm tra -Nếu < phương trình vô nghiệm -Nếu khi đó để tìm nghiệm của phương trình ta thực hiện tiếp bước 2 Bước 2: Chia cả 2 vế phương trình (1) cho , ta được Vì nên tồn tại góc sao cho Khi đó phương trình (1) có dạng Đây là phương trình cơ bản của sin mà ta đã biết cách giải Cách 2: Thực hiện theo các bước Bước 1: Với thử vào phương trình (1) xem có là nghiệm hay không? Bước 2: Với Đặt suy ra Khi đó phương trình (1) có dạng Bước 3: Giải phương trình (2) theo t , sau đó giải tìm x. * Dạng đặc biệt: . . . Chú ý: Từ cách 1 ta có kết quả sau từ kết quả đó ta có thể áp dụng tìm GTLN và GTNN của các hàm số có dạng , và phương pháp đánh giá cho một số phương trình lượng giác . Ví Dụ Minh Hoạ: Ví Dụ 1: Giải phương trình: (1) Giải : Cách 1: Chia cả hai vế phương trình (1) cho ta được Đặt . Lúc đó phương trình (1) viết được dưới dạng Vậy phương trình có 2 nghiệm Cách 2:-Ta nhận thấy là nghiệm của phương trình -Với . Đặt ,lúc đó Phương trình (1) sẽ có dạng Hay Vậy phương trình có 2 họ nghiệm Cách 3: Biến đổi phương trình về dạng Vậy phương trình có hai họ nghiệm Chú ý: Khi làm bài toán dạng này chúng ta nên kiểm tra điều kiện trước khi bắt tay vào giải phương trình bởi có một số bài toán đã cố tình tạo ra những phương trình không thoả mãn điều kiện. Ta xét ví dụ sau: Ví Dụ 2: Giải phương trình Giải: Ta biến đổi phương trình (2) Ta có: Suy ra < Vậy phương trình đã cho vô nghiệm . Ngoài ra chúng ta cần lưu ý rằng việc biến đổi lượng giác cho phù hợp với từng bài toán sẽ biểu diễn chẵn các họ nghiệm . Ta xét ví dụ sau Ví Dụ 3: Giải phương trình Giải : Cách 1:Thực hiện phép biến đổi (3) Đặt Phương trình (3) sẽ được viết thành Vậy phương trình có hai họ nghiệm Cách 2: Biến đổi phương trình về dạng Vậy phương trình có hai họ nghiệm Qua hai cách giải ở bài trên ta nhận thấy bằng cách 2 ta thu được nghiệm phương trình chẵn. Bài trên cĩng có thể sử dụng cách đặt và ta cũng thu được nghiệm chẵn (*) trong đó là các góc phụ thích hợp. Ta xét ví dụ sau: Ví Dụ 4: Giải phương trình: Giải: (4) Vậy phương trình có hai họ nghiệm. Bài tập: Giải các phương trình sau : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1.2.3- Phương trình thuần nhất bậc hai đối với và . a) Định nghĩa: Phương trình thuần nhất bậc hai đối với , là phương trình. (1) trong đó a, b, c, d b) Cách giải : Chia từng vế của phương trình (1) cho một trong ba hạng tử hoặc . Chẳng hạn nếu chia cho ta làm theo các bước sau: Bước 1: Kiểm tra: xem nó có phải là nghiệm của phương trình(1) hay không? Bước 2: Với chia cả hai vế cho lúc đó phương trình (1) trở thành Đây là phương trình bậc hai theo tan ta đã biết cách giải. Cách 2: Dùng công thức hạ bậc đưa phương trình đã cho về phương trình Đây là phương trình bậc nhất đối với sin và cos ta đã biết cách giải *Chú ý: Đối với phương trình đẳng cấp bậc n (n3) với dạng tổng quát trong đó Khi đó ta cũng làm theo 2 bước : Bước 1: Kiểm tra xem có phải là nghiệm của phương trình hay không? Bước 2: Nếu .Chia cả hai vế của phương trình trên cho ta sẽ được phương trình bậc n theo . Giải phương trình này ta được nghiệm của phương trình ban đầu. Ví Dụ Minh Hoạ: Ví Dụ 1: Giải phương trình : (1) Giải: Cách 1: Phương trình (1) Vậy phương trình có hai họ nghiệm. Cách 2: +) Thử với vào phương trình (1) ta có vô lí. Vậy không là nghiệm của phươngtrình. +)Với Chia cả hai vế của phương trình cho ta được Vậy phương trình có hai họ nghiệm * Chú ý: Không phải phương trình nào cũng ở dạng thuần nhất ta phải thực hiện một số phép biến đổi thích hợp Ví Dụ 2: Giải phương trình: (2) Giải : Ta nhận thấy có thể biểu diễn được qua . Luỹ thừa bậc ba biểu thức ta sẽ đưa phương trình về dạng thuần nhất đã biết cách giải Phương trình (2) +) Xét với . Khi đó phương trình có dạng mâu thuẫn Vậy phương trình không nhận làm nghiệm +) Với . Chia cả hai vế của phương trình (2) cho ta được : . Đặt phương trình có được đưa về dạng: Họ nghiệm trên thoả mãn điều kiện của phương trình . Vậy phương trình có duy nhất 1 họ nghiệm *Chú ý: Ngoài phương pháp giải phương trình thuần nhất đã nêu ở trên có những phương trình có thể giải bằng phương pháp khác tuỳ thuộc vào từng bài toán để giải sao cho cách giải nhanh nhất ,khoa học nhất. Ví Dụ 3: Giải phương trình: (3) Giải : Điều kiện Cách 1: Biến đổi phương trình về dạng : Chia cả hai vế của phương trình (3) cho ta được : (do vô nghiệm) nên: Phương trình (*) Vậy phương trình có một họ nghiệm Cách 2: Biến đổi phương trình về dạng Đặt ta được : Vậy phương trình có một họ nghiệm Bài tập : Giải các phương trình sau : 1) 2) 3) 4) 5) 6) 7) 8) 9) 1.2.4-Phương trình đối xứng đối với và . a) Định nghĩa: Phương trình đối xứng đối với và là phương trình dạng trong đó (1) b) Cách giải: Cách 1: Do nên ta đặt . Điều kiện Suy ra và phương trình (1) được viết lại: Đó là phương trình bậc hai đã biết cách giải Cách 2: Đặt thì nên phương trình (1) trở thành . Đây là phương trình bậc hai đã biết cách giải *Chú ý: Hai cách giải trên có thể áp dụng cho phương trình bằng cách đặt và lúc đó Ví Dụ Minh Hoạ : Ví Dụ 1: Giải phương trình Giải: Cách 1: Đặt điều kiện . Lúc đó Khi đó phương trình (1) sẽ có dạng Với không thoả mãn điều kiện nên (*) Cách 2: Đặt . Khi đó phương trình có dạng (*’) Ta thấy không thoả mãn Do đó (*’) Vậy phương trình có hai họ nghiệm *Chú ý: Ta có thể đưa một số dạng phương trình về dạng phương trình đối xứng đã xét ở trên Bài toán 1: Giải phương trình Cách giải: Phương trình (1) có thể viết *Quy ước: Khi có nhiều dấu trong một biểu thức hay một hệ hiểu là cùng lấy dòng trên hoặc cùng lấy dòng dưới Ví Dụ 2: Giải phương trình Giải: Điều kiện: Ta có (2) Ta có (3) (4) (6) Các gía trị của x trong (5) và (6) đều thoả mãn điều kiện của phương trình Vậy theo phương trình có hai họ nghiệm. Bài toán 2: Giải phương trình: với (1) Cách giải: Ta có: Đến đây chúng ta đã biết cách giải Tương tự cho phương trình Ví Dụ 3: Giải phương trình (3) Giải: Điều kiện (3) Giải (4) Giải (5): Đặt (*) Suy ra . Phương trình (5) trở thành Kết hợp với điều kiện (*) thì bị loại Với ta có Các nghiệm của phương trình (4) và (5) đều thoả mãn điều kiện của phương trình Vậy phương trình có ba họ nghiệm Chú ý: Ta có thể áp dụng phương pháp đối với phương trình hỗn hợp chứa các biểu thức đối xứng đối với và với bậc lớn hơn 2. Ví dụ 4: Giải phương trình: Giải : Ta có: Phương trình (1) có dạng Vậy phương trình có 3 họ nghiệm Ví Dụ 5: Giải phương trình: (2) Giải: Điều kiện: Phương trình (2) (loại) Các nghiệm đều thoả mãn điều kiện Vậy phương trình có 3 họ nghiệm Bài tập: Giải các phương trình sau: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 1.2.5- PTLG hỗn hợp chứa các biểu thức đối xứng và . * Phương trình có dạng Cách giải: Bước 1: Đặt ẩn phụ đưa phương trình đã cho về dạng đại số Bước 2: Giải phương trình loại những nghiệm không thoả mãn điều kiện của bài toán Bước 3: Với nghiệm t tìm được ở bước 2 thế vào bước 1 để tìm x Ví dụ Minh Hoạ: Ví Dụ 1: Giải phương trình Giải: Phương trình (1) Đặt , phương trình (2) trở thành hay Vậy phương trình có hai họ nghiệm Ví Dụ 2: Giải phương trình: (2) Giải: Điều kiện Ta có: Phương trình (2) (3) Đặt , phương trình (3) có dạng Với thì nên (4) Suy ra ( thoả mãn điều kiện(2)). Vậy là họ nghiệm duy nhất của phương trình đã cho Bài tập:Giải các phương trình sau: 1. 2. 3. 4. 5. 6. 7. 1.3- Vấn đề loại nghiệm không thích hợp của PTLG. Với nhiều PTLG ta cần đặt điều kiện cho ẩn. Khi đó, trước khi kết luận nghiệm ta cần kiểm tra xem các nghiệm tìm được có thoả mãn điều kiện đã đặt ra hay không, để ta có thể loại những nghiệm không thích hợp. Chúng ta có thể xét ba phương pháp sau: 1.3.1 Phương pháp loại nghiệm trực tiếp. Giả sử ta cần tìm nghiệm của phương trình (1) thoả mãn điều kiện (*) nào đó Trước hết ta giải phương trình (1) sau đó thay nghiệm của phương trình (1) tìm được vào (*) để loại nghiệm không thích hợp. Ví Dụ: Giải phương trình (1) Giải: Điều kiện (*) Khi đó (1) Thay vào (*) xem có thoả mãn hay không ? Suy ra không thoả mãn (*) . Vậy phương trình (1) vô nghiệm . 1.3.2- Phương pháp hình học (dùng đường tròn lượng giác). Giả sử ta cần tìm nghiệm của phương trình (1) thoả mãn điều kiện (*) nào đó .Gọi L là tập các cung không thoả mãn các điều kiện (*), N là tập nghiệm của phg trình (1).Ta biểu diễn điểm cuối của các cung thuộc hai tập L và N lên trên cùng một đường tròn lượng giác. Chẳng hạn điểm cuối của các cung thuộc L ta đánh dấu (x), điểm cuối của các cung thuộc N ta đánh dấu (.). Khi đó những cung có điểm cuối được đánh dấu (.) mà không bị đánh dấu (x) là nghiệm của phương trình. Ví Dụ: Giải phương trình: (1) Giải: Điều kiện Khi đó phương trình (1) Biểu diễn các họ nghiệm (*) và (** ) lên trên cùng một đường tròn lượng giác. sin cos Từ đó ta có nghiệm của phương trình (1) là 1.3.3- Phương pháp đại số. Phương pháp này ta kiểm tra nghiệm bằng cách chuyển về phương trình (thường là phương trình nghiệm nguyên) hoặc bất phương trình đại số. * Ví Dụ: Giải phương trình: Giải: Điều kiện Khi đó (1) Gía trị này là nghiệm của (1) nếu Điều này đúng vì là số lẻ còn là số chẵn Vậy nghiệm của phương trình là Bài tập: 1: Tìm các nghiệm thuộc của phương trình 2: Giải phương trình: 3: Giải phương trình: 4: Giải phương trình: 5: Giải phương trình: 6: Giải phương trình:

    --- Bài cũ hơn ---

  • Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao)
  • Giáo Án Chủ Đề Tự Chọn 11 Tiết 7: Phương Trình Lượng Giác Không Mẫu Mực
  • Chương Viii: Phương Trình Lượng Giác Không Mẫu Mực
  • Trắc Nghiệm Lượng Giác (Kèm Lời Giải)
  • Bài Tập Trắc Nghiệm Phương Trình Mũ Và Logarit File Word
  • Tổng Hợp Các Phương Pháp Giải Phương Trình Và Hệ Phương Trình Môn Toán

    --- Bài mới hơn ---

  • Hướng Dẫn Học Sinh Giải Phương Trình Toán Bằng Máy Tính Casio
  • Công Bố Kết Quả Bình Chọn Giải Thưởng Y Tế Thông Minh Năm 2022
  • Giới Thiệu Nhóm Sản Phẩm Bình Chọn Giải Thưởng Y Tế Thông Minh: “báo Cáo Sự Cố”
  • Người Giải Mã Tử Thi
  • Bài Giải Phương Trình Bậc 2
  • Published on

    1. 1. TỔNG HỢP CÁC PHƯƠNG PHÁP GIẢI BÀI TẬP TOÁN HỌC PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Chủ biên: Nguyễn văn huy 26-7-2012
    2. 3. 4 4 PHƯƠNG TRÌNH MŨ-LOGARIT 158 Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Phương pháp dùng đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Phương pháp biến đổi đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5 HỆ PHƯƠNG TRÌNH 177 Các loại hệ cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Hệ phương trình hoán vị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Phương pháp đặt ẩn phụ trong giải hệ phương trình . . . . . . . . . . . . . . . . . . 206 Phương pháp biến đổi đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Phương pháp dùng đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Phương pháp hệ số bất định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Kĩ thuật đặt ẩn phụ tổng – hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Phương pháp dùng bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Tổng hợp các bài hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Hệ phương trình hữu tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Hệ phương trình vô tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6 SÁNG TẠO PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH 297 Xây dựng một số phương trình được giải bằng cách đưa về hệ phương trình . . . . 297 Sử dụng công thức lượng giác để sáng tác các phương trình đa thức bậc cao . . . . 307 Sử dụng các hàm lượng giác hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . 310 Sáng tác một số phương trình đẳng cấp đối với hai biểu thức . . . . . . . . . . . . . 312 Xây dựng phương trình từ các đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . 318 Xây dựng phương trình từ các hệ đối xứng loại II . . . . . . . . . . . . . . . . . . . 321 Xây dựng phương trình vô tỉ dựa vào tính đơn điệu của hàm số. . . . . . . . . 324 Xây dựng phương trình vô tỉ dựa vào các phương trình lượng giác. . . . . . . . 328 Sử dụng căn bậc n của số phức để sáng tạo và giải hệ phương trình. . . . . . . 331 Sử dụng bất đẳng thức lượng giác trong tam giác . . . . . . . . . . . . . . . . 338 Sử dụng hàm ngược để sáng tác một số phương trình, hệ phương trình. . . . . 345 Sáng tác hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Kinh nghiệm giải một số bài hệ phương trình . . . . . . . . . . . . . . . . . . . . . 353 7 Phụ lục 1: GIẢI TOÁN BẰNG PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH 362 8 Phụ lục 2: PHƯƠNG TRÌNH VÀ CÁC NHÀ TOÁN HỌC NỔI TIẾNG 366 Lịch sử phát triển của phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Có mấy cách giải phương trình bậc hai? . . . . . . . . . . . . . . . . . . . . . 366 Cuộc thách đố chấn động thế giới toán học . . . . . . . . . . . . . . . . . . . . 368 Những vinh quang sau khi đã qua đời . . . . . . . . . . . . . . . . . . . . . . . 372
    3. 4. 5 Tỉểu sử một số nhà toán học nổi tiếng . . . . . . . . . . . . . . . . . . . . . . . . . 376 Một cuộc đời trên bia mộ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 Chỉ vì lề sách quá hẹp! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 Hai gương mặt trẻ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Sống hay chết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 9 Tài liệu tham khảo 381
    4. 5. Lời nói đầu Phương trình là một trong những phân môn quan trọng nhất của Đại số vì có những ứng dụng rất lớn trong các ngành khoa học. Sớm được biết đến từ thời xa xưa do nhu cầu tính toán của con người và ngày càng phát triển theo thời gian, đến nay, chỉ xét riêng trong Toán học, lĩnh vực phương trình đã có những cải tiến đáng kể, cả về hình thức (phương trình hữu tỉ, phương trình vô tỉ, phương trình mũ – logarit) và đối tượng (phương trình hàm, phương trình sai phân, phương trình đạo hàm riêng, . . . ) Còn ở Việt Nam, phương trình, từ năm lớp 8, đã là một dạng toán quen thuộc và được yêu thích bởi nhiều bạn học sinh. Lên đến bậc THPT, với sự hỗ trợ của các công cụ giải tích và hình học, những bài toán phương trình – hệ phương trình ngày càng được trau chuốt, trở thành nét đẹp của Toán học và một phần không thể thiếu trong các kì thi Học sinh giỏi, thi Đại học. Đã có rất nhiều bài viết về phương trình – hệ phương trình, nhưng chưa thể đề cập một cách toàn diện về những phương pháp giải và sáng tạo phương trình. Nhận thấy nhu cầu có một tài liệu đầy đủ về hình thức và nội dung cho cả hệ chuyên và không chuyên, Diễn đàn MathScope đã tiến hành biên soạn quyển sách Chuyên đề phương trình – hệ phương trình mà chúng tôi hân hạnh giới thiệu đến các thầy cô giáo và các bạn học sinh. Quyển sách này gồm 6 chương, với các nội dung như sau: Chương I: Đại cương về phương hữu tỉ cung cấp một số cách giải tổng quát phương trình bậc ba và bốn, ngoài ra còn đề cập đến phương trình phân thức và những cách xây dựng phương trình hữu tỉ. Chương II: Phương trình, hệ phương trình có tham số đề cập đến các phương pháp giải và biện luận bài toán có tham số ,cũng như một số bài toán thường gặp trong các kì thi Học sinh giỏi. Chương III: Các phương pháp giải phương trình chủ yếu tổng hợp những phương pháp quen thuộc như bất đẳng thức, lượng liên hợp, hàm số đơn điệu, . . . với nhiều bài toán mở rộng nhằm giúp bạn đọc có cách nhìn tổng quan về phương trình. Chương này không đề cập đến Phương trình lượng giác, vì vấn đề này đã có trong chuyên đề Lượng giác của Diễn đàn. Chương IV: Phương trình mũ – logarit đưa ra một số dạng bài tập ứng dụng của hàm số logarit, với nhiều phương pháp biến đổi đa dạng như đặt ẩn phụ, dùng đẳng thức, hàm đơn điệu, … Chương V: Hệ phương trình là phần trọng tâm của chuyên đề. Nội dung của chương
    5. 6. 7 bao gồm một số phương pháp giải hệ phương trình và tổng hợp các bài hệ phương trình hay trong những kì thi học sinh giỏi trong nước cũng như quốc tế. Chương VI: Sáng tạo phương trình – hệ phương trình đưa ra những cách xây dựng một bài hay và khó từ những phương trình đơn giản bằng các công cụ mới như số phức, hàm hyperbolic, hàm đơn điệu, . . . Ngoài ra còn có hai phần Phụ lục cung cấp thông tin ứng dụng phương trình, hệ phương trình trong giải toán và về lịch sử phát triển của phương trình. Chúng tôi xin ngỏ lời cảm ơn tới những thành viên của Diễn đàn đã chung tay xây dựng chuyên đề. Đặc biệt xin chân thành cảm ơn thầy Châu Ngọc Hùng, thầy Nguyễn Trường Sơn, anh Hoàng Minh Quân, anh Lê Phúc Lữ, anh Phan Đức Minh vì đã hỗ trợ và đóng góp những ý kiến quý giá cho chuyên đề, bạn Nguyễn Trường Thành vì đã giúp ban biên tập kiểm tra các bài viết để có một tuyển tập hoàn chỉnh. Niềm hi vọng duy nhất của những người làm chuyên đề là bạn đọc sẽ tìm thấy nhiều điều bổ ích và tình yêu toán học thông qua quyển sách này. Chúng tôi xin đón nhận và hoan nghênh mọi ý kiến xây dựng của bạn đọc để chuyên đề được hoàn thiện hơn. Mọi góp ý xin vui lòng chuyển đến [email protected] Thành phố Hồ Chí Minh, ngày 11 tháng 7 năm 2012 Thay mặt nhóm biên soạn Nguyễn Anh Huy
    6. 7. Các thành viên tham gia chuyên đề Để hoàn thành được các nội dung trên, chính là nhờ sự cố gắng nỗ lực của các thành viên của diễn đàn đã tham gia xây dựng chuyên đề: * Chủ biên: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong – TP HCM) * Phụ trách chuyên đề: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong – TP HCM), Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu- TP HCM) * Đại cương về phương trình hữu tỉ: Huỳnh Phước Trường (THPT Nguyễn Thượng Hiền – TP HCM), Phạm Tiến Kha (10CT THPT chuyên Lê Hồng Phong – TP HCM) * Phương trình, hệ phương trình có tham số: thầy Nguyễn Trường Sơn (THPT Yên Mô A – Ninh Bình), Vũ Trọng Hải (12A6 THPT Thái Phiên – Hải Phòng), Đình Võ Bảo Châu (THPT chuyên Lê Quý Đôn – Vũng Tàu), Hoàng Bá Minh ( 12A6 THPT chuyên Trần Đại Nghĩa – TP HCM), Nguyễn Hoàng Nam (THPT Phước Thiền – Đồng Nai), Ong Thế Phương (11 Toán THPT chuyên Lương Thế Vinh – Đồng Nai) * Phương pháp đặt ẩn phụ: thầy Mai Ngọc Thi (THPT Hùng Vương – Bình Phước), thầy Nguyễn Anh Tuấn (THPT Lê Quảng Chí -Hà Tĩnh), Trần Trí Quốc (11TL8 THPT Nguyễn Huệ – Phú Yên), Hồ Đức Khánh (10CT THPT chuyên Quảng Bình), Đoàn Thế Hoà (10A7 THPT Long Khánh – Đồng Nai) * Phương pháp dùng lượng liên hợp: Ninh Văn Tú (THPT chuyên Trần Đại Nghĩa – TPHCM) , Đinh Võ Bảo Châu (THPT – chuyên Lê Quý Đôn, Vũng Tàu), Đoàn Thế Hòa (THPT Long Khánh – Đồng Nai) * Phương pháp dùng bất đẳng thức: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu- TP HCM), Phan Minh Nhật, Lê Hoàng Đức (10CT THPT chuyên Lê Hồng Phong – TP HCM), Đặng Hoàng Phi Long (10A10 THPT Kim Liên – Hà Nội), Nguyễn Văn Bình (11A5 THPT Trần Quốc Tuấn – Quảng Ngãi), * Phương pháp dùng đơn điệu: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong – TP HCM), Hoàng Kim Quân (THPT Hồng Thái – Hà Nội), Đặng Hoàng Phi Long (10A10 THPT Kim Liên – Hà Nội) * Phương trình mũ – logarit: Võ Anh Khoa, Nguyễn Thanh Hoài (Đại học KHTN- TP HCM), Nguyễn Ngọc Duy (11 Toán THPT chuyên Lương Thế Vinh – Đồng Nai) * Các loại hệ cơ bản: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong – TP HCM)
    7. 8. 9 * Hệ phương trình hoán vị: thầy Nguyễn Trường Sơn (THPT Yên Mô A – Ninh Bình), Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong TP HCM), Nguyễn Đình Hoàng (10A10 THPT Kim Liên – Hà Nội) * Phương pháp biến đổi đẳng thức: Nguyễn Đình Hoàng (10A10 THPT Kim Liên – Hà Nội), Trần Văn Lâm (THPT Lê Hồng Phong – Thái Nguyên), Nguyễn Đức Huỳnh (11 Toán THPT Nguyễn Thị Minh Khai – TP HCM) * Phương pháp hệ số bất định: Lê Phúc Lữ (Đại học FPT – TP HCM), Nguyễn Anh Huy, Phan Minh Nhật (10CT THPT chuyên Lê Hồng Phong TP HCM) * Phương pháp đặt ẩn phụ tổng – hiệu: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong TP HCM) * Tổng hợp các bài hệ phương trình: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong TP HCM), Nguyễn Thành Thi (THPT chuyên Nguyễn Quang Diêu – Đồng Tháp), Trần Minh Đức (T1K21 THPT chuyên Hà Tĩnh – Hà Tĩnh), Võ Hữu Thắng (11 Toán THPT Nguyễn Thị Minh Khai – TP HCM) * Sáng tạo phương trình: thầy Nguyễn Tài Chung (THPT chuyên Hùng Vương – Gia Lai), thầy Nguyễn Tất Thu (THPT Lê Hồng Phong – Đồng Nai), Nguyễn Lê Thuỳ Linh (10CT THPT chuyên Lê Hồng Phong – TP HCM) * Giải toán bằng cách lập phương trình: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu- TP HCM) * Lịch sử phát triển của phương trình: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu- TP HCM), Nguyễn Hoàng Nam (THPT Phước Thiền – Đồng Nai)
    8. 9. Chương I: Đ I CƯƠNG V PHƯƠNG TRÌNH H U T PHƯƠNG TRÌNH BẬC BA Một số phương pháp giải phương trình bậc ba Phương pháp phân tích nhân tử: Nếu phương trình bậc ba ax3 + bx2 + cx + d = 0 có nghiệm x = r thì có nhân tử (x − r) do đó có thể phân tích ax3 + bx2 + cx + d = (x − r) Phương trình dạng ax4 + bx3 + cx2 + bkx + ak2 = 0 (1) Ta có (1) ⇔ a(x4 + 2×2 .k + k2 ) + bx(x2 + k) + (c − 2ak)x2 = 0 ⇔ a(x2 + k)2 + bx(x2 + k) + (c − 2ak)x2 = 0 Đến đây có hai hướng để giải quyết: Cách 1: Đưa phương trình về dạng A2 = B2 : Thêm bớt, biến đổi vế trái thành dạng hằng đẳng thức dạng bình phương của một tổng, chuyển các hạng tử chứa x2 sang bên phải. Cách 2: Đặt y = x2 + k ⇒ y k Phương trình (1) trở thành ay2 + bxy + (c − 2ak)x2 = 0 Tính x theo y hoặc y theo x để đưa về phương trình bậc hai theo ẩn x. Ví dụ: Giải phương trình: x4 − 8×3 + 21×2 − 24x + 9 = 0 (1.1) Cách 1: (1.1) ⇔ (x4 + 9 + 6×2 ) − 8(x2 + 3) + 16×2 = 16×2 − 21×2 + 6×2 ⇔ (x2 − 4x + 3)2 = x2 ⇔ x2 − 4x + 3 = x x2 − 4x + 3 = −x ⇔ x2 − 5x + 3 = 0 x2 − 3x + 3 = 0 ⇔    x = 5 − √ 13 2 x = 5 + √ 13 2 Cách 2: (1.1) ⇔ (x4 + 6×2 + 9) − 8x(x2 + 3) + 15×2 = 0 ⇔ (x2 + 3)2 − 8x(x2 + 3) + 15×2 = 0 Đặt y = x2 + 3. (1.1) trở thành: y2 − 8xy + 15×2 = 0 ⇔ (y − 3x)(y − 5x) = 0 ⇔ y = 3x y = 5x Với y = 3x: Ta có x2 + 3 = 3x: Phương trình vô nghiệm Với y = 5x: Ta có x2 + 3 = 5x ⇔ x2 − 5x + 3 = 0 ⇔    x = 5 − √ 13 2 x = 5 + √ 13 2 Vậy phương trình (1.1) có tập nghiệm: S = 5 + √ 13 2 ; 5 − √ 13 2 Nhận xét: Mỗi phương pháp giải có lợi thế riêng. Với cách giải 1, ta sẽ tính được trực tiếp mà
    9. 20. 21 Ví dụ: Giải phương trình: x4 + x2 − 6x + 1 = 0 (5.1) Ta có: (5.1) ⇔ x4 + 4×2 + 4 = 3×2 + 6x + 3 ⇔ (x2 + 2)2 = 3(x + 1)2 ⇔ x2 + 2 = √ 3(x + 1) x2 + 2 = − √ 3(x + 1) ⇔ x2 − √ 3x + 2 − √ 3 = 0 x2 + √ 3 + 2 + √ 3 = 0 ⇔     x = √ 3 − 4 √ 3 − 5 2 x = √ 3 + 4 √ 3 − 5 2 Phương trình (5.1) có tập nghiệm: S = √ 3 − 4 √ 3 − 5 2 ; √ 3 + 4 √ 3 − 5 2 Bài tập tự luyện Giải các phương trình sau: 1. x4 − 19×2 − 10x + 8 = 0 2. x4 = 4x + 1 3. x4 = 8x + 7 4. 2×4 + 3×2 − 10x + 3 = 0 5. (x2 − 16)2 = 16x + 1 6. 3×4 − 2×2 − 16x − 5 = 0 Nhận xét: Phương trình dạng x4 = ax + b được giải theo cách tương tự. Phương trình ∆ = 0 là phương trình bậc ba với cách giải đã được trình bày trước. Phương trình này có thể cho 3 nghiệm m, cần lựa chọn m sao cho việc tính toán là thuận lợi nhất. Tuy nhiên, dù dùng nghiệm m nào thì cũng cho cùng một kết quả. Phương trình bậc bốn tổng quát ax4 + bx3 + cx2 + dx + e = 0 (7) Phân tích các hạng tử bậc 4, 3, 2 thành bình phương đúng, các hạng tử còn lại chuyển sang vế phải: (7) ⇔ 4a2 x4 + 4bax3 + 4cax2 + 4dax + 4ae = 0 ⇔ (2ax2 + bx)2 = (b2 − 4ac)x2 − 4adx − 4ae Thêm vào hai vế một biểu thức 2(2ax2 + bx)y + y2 (y là hằng số) để vế trái thành bình phương đúng, còn vế phải là tam thức bậc hai theo x: f(x) = (b2 − 4ac − 4ay)x2 + 2(by − 2ad)x − 4ae + y2 Tính y sao cho vế phải là một bình phương đúng. Như vậy, ∆ của vế phải bằng 0. Như vậy ta phải giải phương trình ∆ = 0. Từ đó ta có dạng phương trình A2 = B2 quen thuộc. Ví dụ: Giải phương trình x4 − 16×3 + 66×2 − 16x − 55 = 0 (7.1) (7.1) ⇔ x4 − 16×3 + 64×2 = −2×2 + 16x + 55 ⇔ (x2 − 8x)2 + 2y(x2 − 8x) + y2 = (2y − 2)x2 + (16 − 16y)x + 55 + y2 Giải phương trình ∆ = 0 ⇔ (8 − 8y)2 − (55 + y2 )(2y − 2) = 0 tìm được y = 1, y = 3, y = 29. Trong các giá trị này, ta thấy giá trị y = 3 là thuận lợi nhất cho việc tính toán.
    10. 22. 23 Như vậy, chọn y = 3, ta có phương trình: (x2 − 8x + 3)2 = 4(x − 4)2 ⇔ x2 − 8x + 3 = 2(x − 4) x2 − 8x + 3 = −2(x − 4) ⇔ x2 − 10x + 11 = 0 x2 − 6x − 5 = 0 ⇔ x = 3 ± √ 14 x = 5 ± √ 14 Phương trình (7.1) có tập nghiệm S = 3 + √ 14; 3 − √ 14; 5 + √ 14; 5 − √ 14 Nhận xét: Ví dụ trên cho ta thấy phương trình ∆ = 0 có nhiều nghiệm. Có thể chọn y = 1 nhưng từ đó ta có phương trình (x2 −8x+1)2 = 56 thì không thuận lợi lắm cho việc tính toán, tuy nhiên, kết quả vẫn như nhau. Một cách giải khác là từ phương trình x4 +ax3 +bx2 +cx+d = 0 đặt x = t− a 4 , ta sẽ thu được phương trình khuyết bậc ba theo t, nghĩa là bài toán quy về giải phương trình t4 = at2 +bt+c. Bài tập tự luyện 1. x4 − 14×3 + 54×2 − 38x − 11 = 0 2. x4 − 16×3 + 57×2 − 52x − 35 = 0 3. x4 − 6×3 + 9×2 + 2x − 7 = 0 4. x4 − 10×3 + 29×2 − 20x − 8 = 0 5. 2×4 − 32×3 + 127×2 + 38x − 243 = 0 PHƯƠNG TRÌNH DẠNG PHÂN THỨC Phương trình dạng x2 + a2 x2 (x + a)2 = b (2) Ta có: (2) ⇔ x − ax (x + a) 2 + 2x. ax x + a = b ⇔ x2 x + a 2 + 2a. x2 x + a + a2 = b + a2
    11. 23. 24 Đặt y = x2 x + a . Giải phương trình bậc hai theo y để tìm x. Ví dụ: Giải phương trình: x2 + 9×2 (x + 3)2 = 7 (2.1) Điều kiện: x = −3. (2.1) ⇔ x − 3x x + 3 2 + 6. x2 x + 3 = 7 ⇔ x2 x + 3 2 + 6. x2 x + 3 = 7 Đặt y = x2 x + 3 . Ta có phương trình y2 + 6y − 7 = 0 ⇔ y = 1 y = −7 Nếu y = 1: Ta có phương trình x2 = x + 3 ⇔ x = 1 ± √ 13 2 Nếu y = −7: Ta có phương trình x2 + 7x + 21 = 0 (vô nghiệm) Vậy phương trình (2.1) có tập nghiệm: S = 1 + √ 13 2 ; 1 − √ 13 2 Nhận xét: Dựa vào cách giải trên, ta có thể không cần phải đặt ẩn phụ mà thêm bớt hằng số để tạo dạng phương trình quen thuộc A2 = B2 Bài tập tự luyện Giải các phương trình sau: 1. x2 + 4×2 (x + 2)2 = 12 2. x2 + 25×2 (x + 5)2 = 11 3. x2 + 9×2 (x − 3)2 = 14 4. 25 x2 − 49 (x − 7)2 = 1 5. 9 4(x + 4)2 + 1 = 8 (2x + 5)2 Đưa về phương trình tích Đặt ẩn phụ để đưa về hệ phương trình Chia tử và mẫu cho cùng một số ∪ [20 3 ; 12] 2 Nhận xét: Khi đặt ẩn phụ ta phải tìm miền xác định của ẩn phụ và giải quyết bài toán ẩn phụ trên miền xác định vừa tìm. Cụ thể: * Khi đặt t = u(x)(x ∈ D), ta tìm được t ∈ D1 và phương trình f(x, m) = 0 (1) trở thành g(t, m) = 0 (2). Khi đó (1) có nghiệm x ∈ D ⇒ (2) có nghiệm t ∈ D1. * Để tìm miền xác định của t ta có thể sử dụng các phương trình tìm miền giá trị (vì miền xác định của t chính là miền giá trị của hàm u(x)). * Nếu bài toán yêu cầu xác định số nghiệm thì ta phải tìm sự tương ứng giữa x và t, tức là mỗi giá trị t ∈ D1 thì phương trình t = u(x) có bao nhiêu nghiệm x ∈ D. Bài 12: Tìm m để phương trình m( √ x − 2 + 2 4 √ x2 − 4) − √ x + 2 = 2 4 √ x2 − 4 có nghiệm
    12. 40. 41 Từ đây, thay x = y + 1 vào phương trình thứ hai ta được: 15 + 2y − y2 = 2m + 4 − y2 ⇔ (5 − y) (y + 3) − 4 − y2 = 2m Đến đây ý tưởng đã rõ, ta chỉ cần chuyển về tương giao giữa hai đồ thị. Bài 20: Tìm m để hệ sau có nghiệm thực: x3 + (y + 2) x2 + 2xy = −2m − 3 x2 + 3x + y = m Giải Ý tưởng: Ở hệ này ta quan sát thấy bài toán còn chưa rõ đường lối nào vì cả hai phương trình trong hệ đều chứa đến tham số m. Vì vậy để đi đến hướng giải quyết tốt ta nên bắt đầu phân tích hai vế trái trong hai phương trình trong hệ. Cụ thể ta có: x3 + (y + 2) x2 + 2xy = x3 + yx2 + 2×2 + 2xy = x2 (x + y) + 2x (x + y) = (x + y) x2 + 2x Mặt khác: x2 + 3x + y = x2 + 2x + x + y Rõ ràng ở bước phân tích này ta đã tìm ra lối giải cho bài toán này đó chính là đặt ẩn phụ. Lời giải: Đặt: a = x2 + 2x −1 b = x + y ta có hệ phương trình a + b = m ab = −2m − 3 ⇔ a2 − 3 = (a + 2) m (1) b = m − a Từ phương trình (1) trong hệ ta có: a2 − 3 a + 2 = m (2) Hệ đã cho có nghiệm khi và chỉ khi phương trình (2) có nghiệm a −1. Xét hàm số: f (x) = x2 − 3 x + 2 với x −1 Đến đây ta chỉ cần lập bảng bíến thiên. Công việc tiếp theo xin dành cho bạn đọc. Bài tập tự luyện Bài 1: Tìm m để phương trình tan2 x + cot2 x + m(cot x + tan x) = 3 có nghiệm Bài 2: Tìm m để phương trình √ x + √ −x + 9 = √ 9x − x2 + m có nghiệm Bài 3: Tìm m để phương trình √ 3 + x + √ −x + 6 − √ 18 + 3x − x2 = m có nghiệm Bài 4: Tìm m để phương trình x3 − 4mx2 + 8 = 0 có 3 nghiệm phân biệt. Bài 5: Tìm m để phương trình x3 + 3×2 + (3 − 2m) x + m + 1 = 0 có đúng một nghiệm lớn hơn 1. Bài 6: Tìm m để phương trình sau có đúng 2 nghiệm thực phân biệt: 4×2 − 2mx + 1 = 3 √ 8×3 + 2x
    13. 45. 46 PHƯƠNG PHÁP DÙNG ĐIỀU KIỆN CẦN VÀ ĐỦ Lý thuyết Bài toán: Cho hệ phương trình (hoăc hệ bất phương trình) chứa tham số có dạng: (I)    f(x, m) = 0 x ∈ Dx m ∈ Dm hoặc (II)    f(x, m) 0 x ∈ Dx m ∈ Dm Trong đó x là biến số, m là tham số, Dx, Dm là miền xác định của x và m. Yêu cầu đăt ra: ta phải tìm giá trị của tham số m để hệ (I) họăc (II) thỏa mãn một tính chất nào đó. Phương pháp giải: Bước 1 (điều kiện cần): Giả sử hệ thỏa mãn tính chất P nào đó mà đầu bài đòi hỏi. Khi đó, dựa vào đặc thù của tính chất P và dạng của phương trình ta sẽ tìm được một ràng buộc nào đó đối với tham số m và ràng buộc ấy chính là điều kiện cần để có tính chất P. Điều đó có nghĩa là: nếu với m0 không thỏa mãn ràng buộc trên thì chắc chắn ứng với m0, hệ không có tính chất P. Bước 2 (điều kiện đủ): Ta tìm xem trong các giá trị của m vừa tìm được, giá trị nào làm cho hệ thỏa mãn tính chất P. Ở bước này nói chung ta cũng chỉ cần giải những hệ cụ thể không còn tham số. Sau khi kiểm tra, ta sẽ loại đi những giá trị không phù hợp và những giá trị còn lại chính là đáp số của bài toán. Như vậy, ý tưởng của phương pháp này khá rõ ràng và đơn giản. Trong rất nhiều bài toán về biện luận thì phương pháp này lại thể hiện ưu thế rõ rệt. Tuy nhiên, thành công của phương pháp còn nằm ở chỗ ta phải làm thế nào để phát hiện điiều kiện cần một cách hợp lí và chọn điều kiện đủ một cách đúng đắn. Bài tập ví dụ Sử dụng tính đối xứng của các biểu thức có mặt trong bài toán Bài 1: Tìm m để phương trình sau có nghiệm duy nhất 4 √ x + 4 √ 1 − x + √ x + √ 1 − x = m (1) Giải Điều kiện cần: Giả sử (1) có nghiệm duy nhất x = α Dễ thấy nếu (1) có nghiệm x = α thì (1) cũng có nghiệm x = 1 − α. Vì nghiệm là duy nhất
    14. 46. 47 nên α = 1 − α ⇔ α = 1 2 Thay α = 1 2 vào (1) ta tìm được m = √ 2 + 4 √ 8. Điều kiện đủ: Giả sử m = √ 2 + 4 √ 8, khi đó (1) có dạng sau: 4 √ x + 4 √ 1 − x + √ x + √ 1 − x = √ 2 + 4 √ 8 (2) Theo bất đẳng thức AM-GM ta có: √ x + √ 1 − x √ 2 và 4 √ x + 4 √ 1 − x 4 √ 8 Do đó (2) ⇔ x = 1 − x ⇔ x = 1 2 . Vậy để (1) có nghiệm duy nhất thì điều kiện cần và đủ là m = √ 2 + 4 √ 8 2 Bài 2: Tìm a và b để phương trình sau có nghiệm duy nhất 3 (ax + b)2 + 3 (ax − b)2 + 3 √ a2x2 − b2 = 3 √ b (1) Giải Điều kiện cần: Giả sử (1) có nghiệm duy nhất x = x0, khi đó dễ thấy x = −x0 cũng là nghiệm của (1). Do đó từ giả thiết ta suy ra x0 = 0. Thay x0 = 0 vào (1) ta được : 3 √ b2 = 3 √ b ⇒ b = 0 b = 1 Điều kiện đủ: Khi b = 0, (1) có dạng: 3 √ a2x2 + 3 √ a2x2 + 3 √ a2x2 = 0 ⇔ a2 x2 = 0 Do đó (1) có nghiệm duy nhất khi và chỉ khi a = 0 Khi b = 1, (1) có dạng: 3 (ax + 1)2 + 3 (ax − 1)2 + 3 √ a2x2 − 1 = 1 (∗) Đặt u = 3 √ ax + 1; v = 3 √ ax − 1, ta thấy: (∗) ⇔ u3 − v3 = 2 u2 + uv + v2 = 1 ⇔ u − v = 2 u2 + uv + v2 = 1 ⇔ u = 1 v = −1 ⇔ ax + 1 = 1 ax − 1 = −1 ⇔ ax = 0 Vậy (*) có nghiệm duy nhất khi và chỉ khi a = 0 Tóm lại, để phương trình (1) có nghiệm duy nhất thì điều kiện cần và đủ là a = 0; b = 0 b = 1 2 Bài 3: Tìm m để hệ sau có nghiệm duy nhất:    √ 7 + x + √ 11 − x − 4 = m − 4 − 3 √ 10 − 3m 7 + y + 11 − y − 4 = m − 4 − 3 √ 10 − 3m
    15. 50. 51 Nếu b = 0 ⇒ b2 + 1 = 1 nên từ (1) có y = 0, nhưng không thoả (2). Vậy trường hợp này loại. Nếu a = 1: ta có    x2 + (b2 + 1)y = 1 bxy + x2 y = 0 Hệ trên luôn có nghiệm x = y = 0. Vậy a = 1 là điều kiện cần và đủ để hệ đã cho có nghiệm với mọi b 2 Bài 8: Tìm điều kiện của a, b, c, d, e, f để hai phương trình ẩn (x; y) sau là tương đương:    ax2 + bxy + cy2 + dx + ey + f = 0 (1) x2 + y2 = 1 (2) Giải Điều kiện cần: Ta thấy (x; y) = (0; ±1) , (±1; 0) , 1 √ 2 ; 1 √ 2 , − 1 √ 2 ; − 1 √ 2 là nghiệm của (2). Do đó (1) cũng phải có các nghiệm trên. Như vậy    c + e + f = c − e + f = a + d + f = a − d + f = 0 a + b + c + √ 2d + √ 2e + 2f 2 = a + b + c − √ 2d − √ 2e + 2f 2 = 0 Giải hệ trên ta tìm được điều kiện cần của bài toán là (∗)    b = d = e = 0 a = c = −f = 0 Điều kiện đủ: Dễ thấy với (*) thì (2) trùng với (1). Vậy (*) là điều kiện cần và đủ để (1) ⇔ (2) 2 Bài 9: Cho phương trình x3 + ax + b = 0 (1) Tìm a, b để phương trình trên có ba nghiệm phân biệt x1 < x2 < x3 cách đều nhau. Giải Điều kiện cần: Giả sử phương trình (1) có 3 nghiệm khác nhau x1, x2, x3 thỏa giả thiết ⇒ x1 + x3 = 2×2 Theo định lý Viete với phương trình bậc 3 ta có: x1 + x2 + x3 = 0 ⇒ 3×2 = 0 ⇒ x2 = 0 Thay x2 = 0 vào (1) ta được b = 0 Điều kiện đủ: Giả sử b = 0 , khi đó (1) trở thành: x3 + ax = 0 ⇔ x(x2 + a) = 0 (2) Ta thấy (2) có 3 nghiệm phân biệt nếu a < 0. Khi đó các nghiệm của (2) là    x1 = − √ −a x2 = 0 x3 = √ −a

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Bậc 2 Và Tính Nhẩm Nghiệm Pt Bậc 2
  • Các Phương Pháp Giải Phương Trình
  • Các Dạng Hệ Phương Trình Đặc Biệt
  • Giải Phương Trình Bậc Hai (Bản Đầy Đủ)
  • Học Cách Giải Bất Phương Trình Từ Cơ Bản Đến Nâng Cao
  • Các Phương Pháp Giải Phương Trình Nghiệm Nguyên

    --- Bài mới hơn ---

  • Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa – Khử – Du Học & Lao Động
  • Phương Pháp Giải Phương Trình Số Phức Cơ Bản Và Nâng Cao
  • Các Dạng Bài Tập Giải Phương Trình Bậc 2 Số Phức
  • Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số Và Bài Tập Vận Dụng
  • Phương Pháp Quy Nạp Toán Học
  • chúng tôi  giới thiệu đến các bạn học sinh bài viết về Các phương pháp giải phương trình nghiệm nguyên có tham khảo, sưu tầm các bài toán từ cuốn sách Phương trình nghiệm nguyên và kinh nghiệm giải của tác giả Vũ Hữu Bình nhằm mục đích giúp cho các em có nguồn tài liệu quý giá để ôn tập, rèn luyện và nâng cao trình độ phục vụ cho những kỳ thi sắp tới.

    1.1. Phát hiện tính chia hết của một ẩn

    Ví dụ 1. Giải phương trình nghiệm nguyên:  (3x + 17y = 159. )

    Hướng dẫn giải

    Ta dễ thấy y chia hết cho 3 nên ta đặt (y = 3tleft( {t in Z} right).)

    Thay vào phương trình ban đầu ta được 

    Do vai trò bình đẳng của x và y nên ta giả sử (x ge y.) Khi đó, ta có các trường hợp sau:

    TH1: (left{ begin{array}{l}

    x – 1 = 3\

    y – 1 = 1

    end{array} right. leftrightarrow left{ begin{array}{l}

    x = 4\

    y = 2

    end{array} right.)

    TH2: (left{ begin{array}{l}

    x – 1 = -1\

    y – 1 = -3

    end{array} right. leftrightarrow left{ begin{array}{l}

    x = 0\

    y = -2

    end{array} right.)

    1.3. Biểu thị một ẩn theo ẩn còn lại

    Trong Ví dụ 2 ở trên, ta còn có thể làm theo hướng khác với biến đổi như sau: 

    Hướng dẫn giải

    Ta dễ thấy ({x^2},{y^2} ) chia cho 4 có số dư là 0 hoặc 1 nên ({x^2} + {y^2}) chia 4 có số dư là 0; 1 hoặc 2.

    Trong khi đó 1999 chia cho 4 lại dư 3 nên phương trình trên không có nghiệm nguyên.

    2.1. Sắp thứ tự các ẩn

    2.2. Xét từng khoảng giá trị của ẩn

    2.3. Chỉ ra nghiệm nguyên

    2.4. Sử dụng điều kiện có nghiệm của PT bậc hai

    3.1. Sử dụng tính chất chia hết của số chính phương

    3.2. Tạo ra bình phương đúng

    3.3. Tạo ra tổng các số chính phương

    3.4. Xét các số chính phương liên tiếp

    3.5. Sử dụng điều kiện biệt số (Delta ) là số chính phương

    3.6. Sử dụng tính chất số nguyên dương nguyên tố cùng nhau

    3.7. Sử dụng tính chất số nguyên liên tiếp

     

     

     

     

     

    --- Bài cũ hơn ---

  • Chuyên Đề “Phương Trình Nghiệm Nguyên”
  • Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica
  • Kiến Thức Cơ Bản Đại Số Lớp 10: Phương Trình Và Hệ Phương Trình
  • Phương Trình Lượng Giác Chứa Căn Và Phương Trình Lượng Giác Chứa Giá Trị Tuyệt Đối
  • Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Bài Tập Vận Dụng
  • Chuyên Đề Các Phương Pháp Giải Hệ Phương Trình

    --- Bài mới hơn ---

  • Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng
  • Hệ Phương Trình Đối Xứng Loại 1, Loại 2 Có Hai Ẩn
  • Cách Giải Hệ Phương Trình Đối Xứng Loại 1 Cực Hay
  • Hệ Phương Trình Đối Xứng Loại 2 Và Bài Tập Ứng Dụng Có Giải
  • Hệ Phương Trình Đối Xứng Loại 2
  • Chuyên đề: CÁC PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH

    Ngày dạy:

    A. Kiến thức cơ bản

    1. Phương pháp thế

    1. Quy tắc thế

    – từ một trong các phương trình của hệ biểu diễn x theo y (hoặc y theo x)

    – dùng kết quả đó thế cho x (hoặc y) trong pt còn lại rồi thu gọn

    2. Cách giải hệ phương trình bằng phương pháp thế

    – dùng quy tắc thế biến đổi hệ phương trình đã cho để đc 1 hpt mới trong đó có 1 pt 1 ẩn

    – giải pt 1 ẩn vừa tìm đc, rồi suy ra nghiệm của hpt đã cho

    1. Phương pháp cộng đại số

    1. Quy tắc cộng đại số: gồm 2 bước

    – Cộng hay trừ từng vế 2 pt của hpt đã cho để đc pt mới

    – Dùng pt mới ấy thay thế cho 1 trong 2 pt của hệ (giữ nguyên pt kia)

    2. Tóm tắt cách giải hệ phương trình bằng phương pháp cộng đại số

    – Giải theo quy tắc: “Nhân bằng, đổi đối, cộng, chia

    Thay vào tính nốt ẩn kia là thành”

    – Nghĩa là:

    + nhân cho hệ số của 1 ẩn trong hai phương trình bằng nhau

    + đổi dấu cả 2 vế của 1 pt: hệ số của 1 ẩn đối nhau

    + cộng vế với vế của 2 pt trong hệ, rút gọn và tìm 1 ẩn

    + thay vào tính nốt ẩn còn lại

    B. Các dạng toán

    Dạng 1: Giải hệ phương trình bằng pp thế và cộng đại số

    Bài 1: Giải các hpt sau bằng phương pháp thế

    Bài 2: giải các hpt bằng phương pháp thế

    Bài 3: Giải các hệ phương trình sau bằng phương pháp cộng đại số

    Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

    )

    Bài 5: Giải hpt bằng phương pháp cộng đại số

    2. Dạng 2: Tìm tham số m, n để hệ có nghiệm (a;b)

    Bài 1: Tìm các giá trị của m, n sao cho mỗi hpt ẩn x, y sau đây

    a) hpt có nghiệm (2; 1); đáp số:

    b) hpt có nghiệm (-3; 2); đáp số:

    c) hpt có nghiệm (1; -5); đáp số:

    d) hpt có nghiệm (3; -1); đáp số:

    Bài 2: Tìm a, b trong các trường hợp sau:

    a) đg thg d1: ax + by = 1 đi qua các điểm A(-2; 1) và B(3; -2)

    b) đg thg d2: y = ax + b đi qua các điểm M(-5; 3) và N(3/2; -1)

    c) đg thg d3: ax – 8y = b đi qua các điểm H(9; -6) và đi qua giao điểm của 2 đường thẳng (d): 5x – 7y = 23; (d’): -15x + 28y = -62

    d) đt d4: 3ax + 2by = 5 đi qua các điểm A(-1; 2) và vuông góc với đt (d”): 2x + 3y = 1

    đáp số

    --- Bài cũ hơn ---

  • Bài Tập Hệ Phương Trình Đối Xứng
  • Chuyên Đề Hệ Pt Bậc Nhất 2 Ẩn Số
  • Chuyên Đề Và Cách Giải Hệ Phương Trình Bậc Nhất Hai Ẩn
  • Bài Tập Giải Phương Trình Lớp 8
  • Viết Phương Trình Tiếp Tuyến Của Đồ Thị Hàm Số
  • Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai

    --- Bài mới hơn ---

  • Giải 9 Bài Pt Mũ & Log Bằng Ẩn Số Phụ
  • 9 Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên
  • Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Hệ Phương Trình Bậc Nhất Hai Ẩn (Nâng Cao)
  • Chuyên đề: Phương trình – Hệ phương trình

    Các dạng phương trình quy về phương trình bậc hai

    Lý thuyết & Phương pháp giải

    Phương trình trùng phương: ax 4 + bx 2 + c = 0, (a ≠ 0) (*)

    – Đặt t = x 2 ≥ 0 thì (*) ⇔ at 2 + bt + c = 0 (**)

    – Để xác định số nghiệm của (*), ta dựa vào số nghiệm của (**) và dấu của chúng, cụ thể:

    + Để (*) vô nghiệm ⇔

    + Để (*) có 1 nghiệm

    + Để (*) có 2 nghiệm phân biệt ⇔

    + Để (*) có 3 nghiệm ⇔ (**) có 1 nghiệm bằng 0 và nghiệm còn lại dương.

    + Để (*) có 4 nghiệm ⇔ (**) có 2 nghiệm dương phân biệt.

    Một số dạng phương trình bậc bốn quy về bậc hai

    Phương pháp giải: Chia hai vế cho x 2 ≠ 0, rồi đặt t = x + α/x ⇒ t 2 = (x + α/x) 2 với α = d/b

    Loại 2. (x+a)(x+b)(x+c)(x+d) = e với a + c = b + d

    Phương pháp giải: = e

    Loại 3. (x+a)(x+b)(x+c)(x+d) = ex 2 với a.b = c.d

    Phương pháp giải: Đặt t = x 2 + ab + ((a+b+c+d)/2)x thì phương trình

    ⇔ (t + ((a+b-c-d)/2)x)(t – ((a+b-c-d)/2)x) = ex 2 (có dạng đẳng cấp)

    Phương pháp giải: Đặt x = t-(a+b)/2 ⇒ (t + α) 4 + (t – α) 4 = c với α = (a-b)/2

    Phương pháp giải: Tạo ra dạng A 2 = B 2 bằng cách thêm hai vế cho một lượng 2k.x 2 + k 2, tức phương trình (1) tương đương:

    Cần vế phải có dạng bình phương

    Phương pháp giải: Tạo A 2 = B 2 bằng cách thêm ở vế phải 1 biểu thức để tạo ra dạng bình phương: (x 2 + (a/2)x + k) 2 = x 4 + ax 3 + (2k + a 2/4)x 2 + kax + k 2. Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: (2k + a 2/4)x 2 + kax + k 2, thì phương trình

    Lúc này cần số k thỏa:

    Lưu ý: Với sự hổ trợ của casio, ta hoàn toàn có thể giải được phương trình bậc bốn bằng phương pháp tách nhân tử. Tức sử dụng chức năng table của casio để tìm nhân tử bậc hai, sau đó lấy bậc bốn chia cho nhân tử bậc hai, thu được bậc hai. Khi đó bậc bốn được viết lại thành tích của 2 bậc hai

    Phân tích phương trình bậc ba bằng Sơ đồ Hoocner

    Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

    Nguyên tắc nhẩm nghiệm:

    + Nếu tổng các hệ số bằng 0 thì phương trình sẽ có 1 nghiệm x = 1

    + Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có 1 nghiệm x = -1

    + Nếu phương trình chứa tham số, ta sẽ chọn nghiệm x sao cho triệt tiêu đi tham số m và thử lại tính đúng sai

    Chia Hoocner: đầu rơi – nhân tới – cộng chéo

    Ví dụ minh họa

    Hướng dẫn:

    Ta thấy x = 0 không phải là nghiệm của phương trình nên chia hai vế phương trình cho x 2 ta được: 2(x 2 + 1/x 2) – 5(x + 1/x) + 6 = 0

    Ta có phương trình: 2(t 2 – 2) – 5t + 6 = 0 ⇔ 2t 2 – 5t + 2 = 0 ⇔

    + t = 1/2 ⇒ x + 1/x = 1/2 ⇔ 2x 2 – x + 2 = 0 (vô nghiệm)

    + t = 2 ⇒ x + 1/x = 2 ⇔ x 2 – 2x + 1 = 0 ⇔ x = 1

    Vậy phương trình có nghiệm duy nhất x = 1

    Bài 2: Giải phương trình x(x+1)(x+2)(x+3) = 24

    Hướng dẫn:

    Phương rình tương đương với (x 2 + 3x)(x 2 + 3x + 2) = 24

    Đặt t = x 2 + 3x, phương trình trở thành

    t(t+2) = 24 ⇔ t 2 + 2t – 24 = 0 ⇔

    + t = -6 ⇒ x 2 + 3x = -6 ⇔ x 2 + 3x + 6 = 0 (Phương trình vô nghiệm)

    + t = 4 ⇒ x 2 + 3x = 4 ⇔ x 2 + 3x – 4 = 0 ⇔

    Vậy phương rình có nghiệm là x = -4 và x = 1

    Bài 3: Giải phương trình 4(x+5)(x+6)(x+10)(x+12) = 3x 2

    Hướng dẫn:

    Phương trình tương đương với 4(x 2 + 17x + 60)(x 2 + 16x + 60) = 3x 2 (*)

    Ta thấy x = 0 không phải là nghiệm của phương trình.

    Xét x ≠ 0, chia hai vế cho x 2 ta có

    (*)⇔ 4(x + 17 + 60/x)(x + 16 + 60/x) = 3

    Đặt y = x + 16 + 60/x phương trình trở thành

    4(y+1)y = 3 ⇔ 4y 2 + 4y – 3 = 0 ⇔

    Với y = 1/2 ta có x + 16 + 60/x = 1/2 ⇔ 2x 2 + 31x + 120 = 0

    Với y = -3/2 ta có x + 16 + 60/x = -3/2 ⇔ 2x 2 + 35x + 120 = 0

    Vậy phương trình có nghiệm là x = -8, x = -15/2 và

    Hướng dẫn:

    Suy ra x = -2

    Vậy phương trình có nghiệm duy nhất x = -2

    Bài 5: Giải phương trình

    Hướng dẫn:

    Điều kiện: x ≠ 2; x ≠ 3

    Đặt u = (x+1)/(x-2); v = (x-2)/(x-3) ta được u 2 + uv = 12v 2

    ⇔(u – 3v)(u + 4v) = 0 ⇔ u = 3v; u = -4v

    +) u = 3v ⇔ (x+1)/(x-2) = 3(x-2)/(x-3) ⇔ x 2 + 4x + 3 = 3x 2 – 12x + 12

    ⇔2x 2 – 16x + 9 = 0 ⇔ x = (8 ± √46)/2

    +) u = -4v ⇔ (x+1)/(x-2) = -4(x-2)/(x-3) ⇔ x 2 + 4x + 3 = -4x 2 + 16x – 16

    ⇔ 5x 2 – 12x + 19 = 0(Vô nghiệm)

    Vậy phương trình đã cho có hai nghiệm là x = (8 ± √46)/2

    Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

    Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

    Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

    Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

    phuong-trinh-he-phuong-trinh.jsp

    --- Bài cũ hơn ---

  • Dạng Bài Tập Về Áp Dụng Công Thức Giải Bất Phương Trình Lớp 10 Phải Biết
  • Đạo Hàm Và Bài Toán Giải Phương Trình, Bất Phương Trình Lượng Giác
  • Sử Dụng Máy Tính Cầm Tay Giải Nhanh Trắc Nghiệm Lượng Giác
  • Cách Tìm Hai Số Khi Biết Tổng Và Tích Của Chúng
  • Phương Trình Bậc Hai, Giải Bài Toán Bằng Cách Lập Pt Chuyen De Phuong Trinh Bac Hai Dinh Ly Viet Giai Bai Toan Docx
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100