Các Bài Toán Hình Học Lớp 9 Có Lời Giải

--- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Các Bài Toán Về Hình Học Lớp 5 (Có Đáp Án)

    --- Bài mới hơn ---

  • 15 Đề Luyện Thi Học Sinh Giỏi Môn Toán Lớp 5
  • Đề Thi Cuối Học Kì 2 Môn Toán Lớp 5 Theo Thông Tư 22 Có Đáp Án
  • Top 20 Đề Thi Học Kì 2 Toán Lớp 5 Năm 2022
  • 300 Câu Hỏi Trắc Nghiệm Toán Lớp 5 Có Đáp Án
  • 8 Dạng Toán Về Chuyển Động Dành Cho Học Sinh Lớp 5 (Dạng 3)
  • CÁC BÀI TOÁN HÌNH HỌC LỚP 5

    : Hình bình hành ABCD có cạnh AB = BC. Biết cạnh AB dài hơn cạnh BC là 1dm. Hỏi chu vi hình bình hành là bao nhiêu xăng- ti-mét?

    Trả lời: Chu vi hình bình hành đó là … cm.

    A. 8 B. 80 C. 40 D. 16

    Câu 2: Một miếng bìa hình chữ nhật có chu vi gấp 5 lần chiều rộng. Nếu tăng chiều rộng thêm 9cm, tăng chiều dài thêm 4cm thì miếng bìa trở thành một hình vuông. Diện tích miếng bìa ban đầu là …

    A. 75 B. 150 C. 1242 D. 100

    : Một người rào xung quanh khu đất hình chữ nhật có chiều dài 28m, chiều rộng 15m hết 43 chiếc cọc. Hỏi người đó rào xung quanh khu đất hình vuông có cạnh 25m thì hết bao nhiêu chiếc cọc? Biết khoảng cách giữa 2 cọc là như nhau.

    Trả lời: Số cọc cần tìm là …

    A. 86 B. 50 C. 172 D. 25

    Câu 4: Một tấm bìa hình bình hành có chu vi 4dm. Chiều dài hơn chiều rộng 10cm và bằng chiều cao. Tính diện tích tấm bìa đó.

    Trả lời: Diện tích tấm bìa đó là … .

    A. 375 B. 144/5 C. 15 D. 135

    Câu 5: Tìm diện tích của 1/3 tấm bìa hình vuông có cạnh dài 1/2 m.

    Trả lời: Diện tích của 1/3 tấm bìa đó là … .

    A. 2/3 B. 1/12 C. 3/4 D.1/4

    : Một hình chữ nhật được chia thành 12 hình vuông bằng nhau và được xếp thành 3 hàng. Hỏi chu vi của hình chữ nhật là bao nhiêu nếu chu vi của mỗi hình vuông nhỏ là 12cm?

    Trả lời: Chu vi hình chữ nhật đó là … cm.

    A. 432 B. 42 C. 108 D. 14

    : Chiều rộng của khu đất hình chữ nhật A là 105m, bằng 7/12 chiều dài của nó. Hỏi chu vi của mảnh vườn B là bao nhiêu biết chu vi của mảnh vườn B bằng 5/6 chu vi khu đất A.

    Trả lời: Chu vi mảnh vườn B là ……… m. (475)

    : Một hình vuông có diện tích bằng 4/9 diện tích của một hình bình hành có đáy 25cm và chiều cao 9cm. Tính cạnh của hình vuông.

    Trả lời: Cạnh hình vuông đó dài ……… cm. (10)

    Câu 9: Một hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Nếu mỗi chiều tăng 1m thì được hình chữ nhật mới có diện tích tăng thêm 26 . Tính chu vi hình chữ nhật ban đầu.

    A. 50m B 48m C. 54m D. 60m

    Câu 10: Một hình thoi có đường chéo thứ nhất là 3/5 m và bằng 2/3 đường chéo thứ hai. Tính diện tích hình thoi đó.

    Trả lời: Diện tích hình thoi đó là … .

    A. 6/25 B. 27/100 C. 27/50 D. 27/5

    Xem đầy đủ và tải về file word TẠI ĐÂ Y

    --- Bài cũ hơn ---

  • Đề Thi Học Sinh Giỏi Môn Toán Lớp 5 Có Đáp Án
  • Đề Thi Hsg Toán + Tv Lớp 5 Có Đáp Án
  • Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Môn Toán Lớp 5
  • Một Số Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Hyip, Make Money Online, Crypto, Bitcoin,: Sáng Kiến Kinh Nghiệm Toán 5: Đổi Mới Phương Pháp Giảng Dạy Để Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Các Dạng Toán Hình Học Lớp 5

    --- Bài mới hơn ---

  • Giải Lesson 1 Unit 12 Trang 12,13 Sgk Tiếng Anh Lớp 5 Mới
  • Đề Thi Học Kì 2 Môn Khoa Học Lớp 5 Năm Học 2022
  • Lời Giải Vở Bài Tập Tiếng Việt Lớp 3 (Tập 2)
  • Lời Giải Sách Lưu Hoằng Trí 7 Trang 178
  • Bài 1 Trang 147 Sgk Địa Lí 10
  • Trong quá trình học tập để đạt được kết quả cao đồng thời nắm vững kiến thức về môn toán học một cách hiệu quả ngoài việc học trên lớp cũng như chương trình giảng dạy theo bộ sách giáo khoa cải cách các Bạn cần phải tìm hiểu và cần nên sưu tầm thêm một số tư liệu về những dạng bài tập hay chịu khó nghiên cứu các tài liệu về bộ môn toán học lớp 5 nếu làm được điều đó chúng tôi tin chắc rằng Bạn sẽ rất thành công và trở thành người giỏi môn Toán thực sự .Chính vì vậy chúng tôi cũng cố gắng biên soạn và sưu tầm kho một cách đầy đủ và đa dang nhằm giúp Bạn có thêm tài liệu tham khảo , trong quá trình sưu tầm và biên soạn đội ngũ Giáo viên chuyên Toán của Gia Sư Tài Năng Việt cũng không tránh khỏi những sai sót mong các Bạn thông cảm và đóng góp thêm để kho tài liệu môn Toán lớp 5 ngày càng phong phú và bổ ích hơn. Xin chân thành cám ơn sự đóng góp ý kiến của các Bạn!

    Gia Sư Dạy Kèm Tài Năng Việt chuyên cung cấp gia sư dạy kèm:

    Gia Sư Dạy kèm lớp 1 đến lớp 12 và luyện thi đại học tất cả các môn.

    – Dạy kèm Toán, Tiếng việt, Chính tả, rèn chữ đẹp, Dạy báo bài Từ lớp 1 đến lớp 5.

    – Dạy kèm cho các em chuẩn bị vào lớp 1, Rèn chữ đẹp.

    – Luyện thi cấp tốc các chứng chỉ tiếng anh: Toiec, Lelts, Toefl…

    Gia Sư Tiếng anh Dạy từ căn bản và nâng cao, anh văn thiếu nhi.

    – Dạy kèm các ngoại ngữ: Hoa, Hàn, Nhật, Pháp…

    – Dạy kèm Tin Học từ căn bản đến nâng cao.

    – Dạy kèm các môn năng khiếu: Đàn: Organ, Piano…Dạy vẻ: Mỹ thuật, Hội họa.

    Gia sư dạy kèm lớp 5 là được chúng tôi lựa chọn là các bạn có thành tích học tập giỏi, có điểm thi đại học cao, với các bạn ấy có phương pháp học tập tốt, quản lý thời gian hiệu quả. Sẽ hướng dẩn các em theo phương pháp đó thật tốt.

    – Ôn tập lại những kiến thức đã học ở trường.

    – Dạy sát chương trình, dạy sâu kiến thức, dạy kỹ chuyên môn.

    – Kỹ năng làm bài thi trắc nghiệm.

    – Luôn nâng cao và mở rộng kiến thức cho các em.

    – Nhận dạy thử tuần đầu không thu phí.

    (Để được tư vấn Miễn phí) Qúy Phụ Huynh Học Sinh Có Nhu Cầu Vui Lòng Xin Liên Hệ

    ĐT số: DĐ: 0908.193.734 – 0918.793.586 Hoặc Truy Cập Vào Trang web : chúng tôi

    --- Bài cũ hơn ---

  • Soạn Bài: Hoa Học Trò Trang 43 Sgk Tiếng Việt 4 Tập 2
  • Soạn Bài: Thắng Biển Trang 76 Sgk Tiếng Việt 4 Tập 2
  • Tập Làm Văn Lớp 4: Tóm Tắt Tin Tức
  • Giải Vở Bài Tập Toán 4 Bài 132: Luyện Tập Chung
  • Sách Giáo Khoa Toán 6 Tập 1
  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

    --- Bài mới hơn ---

  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn (Tài Liệu Free)
  • Các Bài Toán Giải Bằng Phân Tích Cấu Tạo Số
  • Giải Toán 12 Bài 5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Của Hàm Số
  • Bài Tập Trắc Nghiệm Trang 32 Sbt Sinh Học 9: Trắc Nghiệm Trang 32 Chương Ii Nhiễm Sắc Thể Sbt Sbt Sinh Học 9
  • Soạn Bài : Những Câu Hát Than Thân
  • Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

    Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

    Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

    Cảm ơn các bạn.

    Phan Đức Minh – Lê Phúc Lữ

    --- Bài cũ hơn ---

  • Giải Bài Tập Sgk Công Nghệ Lớp 11 Bài 3: Thực Hành: Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Giải Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4 Ngắn Nhất: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển.
  • Soạn Văn Lớp 6 Bài Nghĩa Của Từ Ngắn Gọn Hay & Đúng Nhất
  • Bản Mềm: Bài Tập Hình Học Nâng Cao Lớp 5 Có Lời Giải

    --- Bài mới hơn ---

  • Tổng Hợp Lý Thuyết, Bài Tập Chương 2 Hình Học 8 Có Đáp Án.
  • Đề Học Kì 2 Toán 8 Có Đáp Án Khá Hay Năm 2022
  • Top 4 Đề Thi Toán Lớp 8 Học Kì 2 Có Đáp Án, Cực Sát Đề Chính Thức.
  • Tổng Hợp Lý Thuyết, Bài Tập Chương 1 Hình Học 8 Có Đáp Án.
  • Các Dạng Toán Về Hình Chữ Nhật
  • Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải

    Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải được biên soạn có hệ thống. Phân loại khoa học theo từng dạng bài cụ thể. Quá trình luyện tập học sinh có thể hệ thống hóa lời giải một cách chi tiết. Quý thầy cô giáo có thể tải về dựa theo đối tượng học sinh của mình. Để sửa đổi cho phù hợp. Ngoài ra với phương pháp dạy học tích cực. Thầy cô có thể đưa những ví dụ trực quan hơn vào câu hỏi. Qua đó kích thích sự sáng tạo của học sinh Qua Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải. Tải thêm bộ đề thi cuối kỳ 2 môn toán cấp tiểu học, tài liệu tiểu học

    Chương trình cơ bản Toán 5 có gì

    Để dễ dàng hơn trong làm bài tập hình học nâng cao lớp 5 các bạn cần nắm vững kiến thức cơ bản trước. Trong phần này, chúng tôi sẽ nêu tổng quát kiến thức hình học trong chương trình Toán 5:

    • Hình tam giác và diện tích hình tam giác
    • Hình thang và diện tích hình thang
    • Hình tròn, đường tròn
    • Chu vi và diện tích hình tròn
    • Hình hộp chữ nhật, hình lập phương
    • Diện tích xung quanh, diện tích toàn phần
    • Thể tích của một hình
    • Hình trụ, hình cầu
    • Bảng đơn vị đo thể tích
    • Bảng đơn vị đo thời gian
    • Bảng đơn vị đo khối lượng
    • Bảng đơn vị đo độ dài
    • Cộng, trừ, nhân, chia thời gian
    • Bài toán về tỉ lệ nghịch

    Hình ảnh bản mềm

    Đối với bài tập hình học nâng cao lớp 5, nội dung vẫn xoay quanh những kiến thức cơ bản trên. Tuy nhiên độ khó của nó thì khác nhau rõ rệt. Nếu như cơ bản chỉ yêu cầu áp dụng công thức thì toán nâng cao lại yêu cầu vận dụng linh hoạt tính chất hình học.

    Ngoài ra còn cần những kĩ năng mới như cắt, ghép hình, chứng minh tính chất, nêu giả định,… Hình học lớp 5 được đánh giá là chương trình khó. Hy vọng tài liệu của chúng tôi sẽ trợ giúp các bạn trong quá trình học.

    Những lưu ý khi làm bài tập hình học

    • Vẽ hình ra cả giấy nháp trước. Như vậy, các bạn có thể tránh vẽ nhầm vào vở. Nhờ vậy, hình vẽ trong bài làm luôn sạch đẹp.
    • Cần thể hiện những dữ liệu bài cho lên hình vẽ một cách rõ ràng. Như vậy, khi tìm cách giải không cần phải nhìn lại đề bài nữa.
    • Nên dùng kí hiệu thống nhất với các loại dữ liệu như đường thẳng song song, …
    • Nếu như cảm thấy khó trong việc giải quyết bài toán, hãy thử dùng sơ đồ ngược. Tức là đi từ yêu cầu của bài, xác định những yếu tố cần có để suy ra yêu cầu của bài.

    Ngay từ lớp 5, các bạn nên tạo thói quen làm bài để khi lên Toán 6, 7, … việc làm toán hình sẽ dễ dàng hơn. Một số điều cần chú ý khi làm bài toán hình như sau:

    Bài tập ví dụ:

    Lời giải:

    Đề bài: Cho tam giác ABC. Trên BC lấy I là trung điểm của BC. Trên đoạn thẳng AI lấy điểm M thỏa mãn AM = 2MI. Cm kéo dài cắt AB tại điểm N. So sánh diện tích hai tam giác AMN và BMN.

    Do tam giác MIC và MAC có cùng đường cao kẻ từ C. AM = 2MI

    Do hai tam giác MIC và MIB có cùng đường cao kẻ từ M, IC = IB

    Tải tài liệu miễn phí ở đây

    Do tam giác MAC và MBC có chung đáy MC nên 2 đường cao kẻ từu 2 đỉnh A và B của 2 tam giác là bằng nhau.

    --- Bài cũ hơn ---

  • Giải Bài 16, 17, 18, 19 Trang 75 Sgk Toán 8 Tập 1
  • Bài Tập Hình Thang Chọn Lọc, Có Đáp Án
  • Bài Tập Về Diện Tích Hình Thang Lớp 8 Trong Sgk, Sbt …
  • Bài Tập Về Hình Thang Cân
  • Chuyên Đề Hình Thang Và Hình Thang Cân
  • Một Số Phương Pháp Giúp Học Sinh Lớp 5 Giải Các Dạng Toán Có Lời Văn

    --- Bài mới hơn ---

  • Bản Mềm: Các Chuyên Đề Toán Lớp 4 + 5 Có Hướng Dẫn
  • Hướng Dẫn Giải Toán Lớp 4, Toán Lớp 5 Chuyên Đề Cấu Tạo Số
  • Giải Bài Toán Lớp 5 Trang 106
  • Bài Giải Lớp 3 Kì 2
  • 16 Đề Bồi Dưỡng Hsg Lớp 5 Và 83 Bài Toán Tiểu Học Hay
  • Bậc tiểu học là bậc học vô cùng quan trọng trong hệ thống giáo dục quốc dân. Ở bậc học này, học sinh được trang bị những kiến thức vô cùng cơ bản và làm nền tảng cho mọi bậc học sau.

    Trong các môn học ở tiểu học, cùng với môn Tiếng Việt, môn Toán có vị trí hết sức quan trọng bởi vì các kiến thức, kĩ năng của môn Toán ở tiểu học có nhiều ứng dụng trong đời sống; chúng rất cần thiết cho người lao động, rất cần thiết để học tốt các môn học khác ở Tiểu học và chuẩn bị cho việc học tốt môn Toán ở bậc Trung học.

    Môn Toán góp phần rất quan trọng trong việc rèn luyện phương pháp suy nghĩ, giải quyết vấn đề, góp phần phát triển trí thông minh. Những thao tác tư duy có thể rèn luyện cho học sinh qua môn Toán bao gồm phân tích tổng hợp, so sánh, khái quát hóa, trừu tượng hóa, cụ thể hoá. Các phẩm chất trí tuệ có thể rèn luyện cho học sinh bao gồm: Tính độc lập, tính linh hoạt, tính nhuần nhuyễn, tính sáng tạo thông qua việc giải các bài toán.

    Toán học còn góp phần quan trọng trong việc đặt nền móng cho việc hình thành và phát triển nhân cách học sinh. Trên cơ sở cung cấp những tri thức khoa học ban đầu về số học, các số tự nhiên, các số thập phân, các đại lượng cơ bản, giải toán có lời văn, ứng dụng thiết thực trong đời sống hằng ngày. Toán học với tư cách là một bộ môn khoa học nghiên cứu hệ thống kiến thức cơ bản. Môn toán là “chìa khóa” mở cửa cho tất cả các ngành khoa học khác, nó là công cụ cần thiết của người lao động trong thời đại mới. Vì vậy, môn toán là môn học không thể thiếu được trong nhà trường, nó giúp con người phát triển toàn diện, nó góp phần giáo dục tình cảm, trách nhiệm của các thế hệ học sinh đối với quê hương, đất nước.

    Trong chương trình toán ở tiểu học, có thể nói giai đoạn lớp 4, lớp 5 là giai đoạn đột phá lớn đối với học sinh về kiến thức. Nhiều em học sinh học rất tốt ở các lớp 1,2,3 nhưng khi bước vào giai đoạn này các em có thể bị choáng ngợp trước những luồng kiến thức phức tạp. Ở giai đoạn các lớp 1,2,3 các em học sinh chỉ được học những kiến thức, những kĩ năng cơ bản nhất về điểm, đọc, viết, so sánh số tự nhiên, học sinh bắt đầu chuyển từ hoạt động chủ đạo là hoạt động vui chơi sang hoạt động học tập. Do đó, học tập ở giai đoạn này các em ” Học mà chơi, chơi mà học”. Ngược lại, ở giai đoạn lớp 4,5 hoạt động chủ đạo của các em ở giai đoạn này là hoạt động học tập. Ở đây, học sinh được thông qua các hoạt động thực hành, luyện tập của cá nhân hay nhóm để từ đó có thể tự mình phát hiện ra các kiến thức, kỹ năng mà giáo viên yêu cầu nên nội dung môn toán được nâng lên một bậc cao hơn, sâu sắc hơn như các dạng bài: Tìm số trung bình cộng, tìm hai số khi biết tổng và hiệu của hai số đó, tìm hai số khi biết tổng (hoặc hiệu)và tỉ của hai số đó ….Vì vậy, làm thế nào để học sinh hiểu được giải quyết được các vấn đề này là một quá trình phấn đấu, nổ lực không ngừng của cả giáo viên và học sinh.

    Trong môn toán ở bậc tiểu học thì các bài toán có lời văn có một vị trí vô cùng quan trọng bởi vì:

    Việc giải toán giúp học sinh củng cố, vận dụng và hiểu sâu sắc thêm tất cả các kiến thức đã được học trong môn toán ở tiểu học.

    – Thông qua nội dung thực tế của các đề toán, học sinh sẽ tiếp nhận những kiến thức phong phú và có điều kiện để rèn luyện khả năng áp dụng những kiến thức toán học vào cuộc sống. Khi giải mỗi bài toán, học sinh biết rút ra được bản chất toán học của mỗi dạng bài, biết lựa chọn những phép tính thích hợp, biết làm đúng các phép tính đó, biết đặt lời giải chính xác …Vì thế, quá trình giải toán sẽ giúp học sinh rèn luyện khả năng quan sát và giải quyết các hiện tượng của cuộc sống qua khả năng toán học của mình.

    – Việc giải các bài toán sẽ giúp phát triển trí thông minh, óc sáng tạo và thói quen

    làm việc một cách khoa học cho học sinh. Bởi vì, khi giải toán học sinh phải biết tập trung vào bản chất của đề toán, phải biết gạt bỏ những cái không quan trọng, phải biết phân biệt cái đã cho và cái phải tìm, phải biết phân tích tìm ra mối liên hệ giữa các số liệu…Nhờ đó mà đầu óc của các em sẽ sáng suốt hơn, tinh tế hơn, tư duy của các em sẽ linh hoạt, chính xác hơn, cách suy nghĩ và làm việc của các em sẽ khoa học hơn.

    – Việc giải các bài toán còn đòi hỏi học sinh phải biết tự mình giải quyết vấn đề, tự mình thực hiện các phép tính và kiểm tra lại kết quả…Do đó, giải toán là cách rất tốt để rèn luyện đức tính kiên trì, tự lực vượt khó, cẩn thận, chu đáo, yêu thích sự chặt chẽ, chính xác.

    Là một giáo viên giảng dạy nhiều năm ở lớp 4 và lớp 5, bản thân tôi không ngừng đổi mới phương pháp dạy học. Tôi luôn băn khoăn, suy nghĩ, tìm ra những phương pháp phù hợp nhằm giúp học sinh mình giải được các bài toán có lời văn. Bên cạnh đó, căn cứ vào thực trạng của học sinh ở toàn trường Tiểu học Ea Dah xã Ea Dah- Krông Năng – Đăk Lăk

    Từ những vấn đề trên, bản thân tôi đã tìm tòi, nghiên cứu và rút ra được một số phương pháp giúp học sinh lớp 5 giải các dạng toán có lời văn đó cũng chính là lí do mà tôi chọn đề tài này.

    * Để kiến thức cơ bản về các phép tính của các em ngày càng vững chắc, theo tôi có những giải pháp biện pháp sau:

    – Thường xuyên kiểm tra các bản tính cộng, trừ, nhân, chia giúp các em làm thành thạo các phép tính cơ bản.

    – Phải chú trọng và giúp học sinh nắm chắc các tính chất quan trọng của các phép tính như:

    – Nếu ta thêm hoặc bớt bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm hoặc bớt đi bấy nhiêu đơn vị.

    – Nếu ta tăng số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị thì tổng số không thay đổi

    – Khi ta cùng tăng hoặc cùng giảm số bị trừ và số trừ bao nhiêu đơn vị thì hiệu không thay đổi.

    – Khi ta tăng hoặc giảm số bị trừ bao nhiêu đơn vị thì hiệu số cũng tăng hoặc giảm bấy nhiêu đơn vị.

    – Khi ta tăng số trừ bao nhiêu đơn vị thì hiệu số lại giảm bấy nhiêu đơn vị. Khi ta giảm số trừ bao nhiêu đơn vị thì hiệu lại tăng lên bấy nhiêu đơn vị và ngược lại.

    – Nếu ta thêm hoặc bớt ở một thừa số bao nhiêu đơn vị thì tích mới cũng tăng thêm hoặc giảm xuống bao nhiêu lần thừa số còn lại.

    – Nếu ta tăng lên hoặc giảm xuống một thừa số bao nhiêu lần thì tích mới cũng tăng lên hoặc giảm xuống bấy nhiêu lần.

    – Nếu ta tăng thừa số thứ nhất lên bao nhiêu lần và giảm thừa số thứ hai bấy nhiêu lần thì tích vẫn không thay đổi.

    – Khi ta cùng tăng hoặc cùng giảm số bị chia và số chia bao nhiêu lần thì thương vẫn không thay đổi.

    – Khi ta tăng hoặc giảm số bị chia bao nhiêu lần thì thương cũng tăng lên hoặc giảm xuống bấy nhiêu lần.

    – Khi ta tăng số chia lên bao nhiêu lần thì thương giảm xuống bấy nhiêu lần. Khi ta giảm số chia bao nhiêu lần thì thương sẽ tăng lên bao nhiêu lần.

    Phải vận dụng các tính chất này trong việc giải toán, giúp học sinh xác định được các dạng toán và tìm ra được cách giải chính xác các bài toán.

    – Để giúp học sinh xác định các bước giải một bài toán có lời văn, theo tôi thông thường có các bươc sau đây:

    Bước 1: Học sinh đọc kĩ đề toán, xác định các vấn đề quan trọng, bỏ bớt những từ ngữ không quan trọng để bài toán ngắn gọn hơn.

    Bước 3: Học sinh tóm tắt đề toán.

    Bước 4: Học sinh giải bài toán bằng những phép tính .

    Bước 5: Học sinh kiểm tra lại kết quả tìm được.Tìm xem còn có cách giải nào khác, hay hơn.

    Trong các bước đó giáo viên cho học sinh thấy tầm quan trọng của bước phân tích đề toán và bước kiểm tra lại kết quả, tạo thói quen cho học sinh bao giờ làm xong cũng phải kiểm tra lại toàn bộ bài toán.

    Phải tiếp tục đổi mới phương pháp dạy học, phải kế thừa tiếp thu có chọn lọc một số phương pháp dạy học truyền thống. Những giải pháp biện pháp được thể hiện qua từng dạng bài cụ thể như sau:

    Cho học sinh đọc kĩ đề giáo viên hướng dẫn học sinh gạch chân những từ ngữ quan trọng.

    Giáo viên hướng dẫn học sinh phân tích đề toán như sau:

    Để số lớn bằng 3 lần số bé (không dư) thì ta phải bớt số lớn 10 và lúc đó tổng phải giảm 10 chỉ còn lại 120. ( Nếu ta thêm hoặc bớt bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm hoặc bớt đi bấy nhiêu đơn vị.)

    Lúc này bài toán rất đơn giản là

    Đây là bài toán cơ bản Tìm hai số khi biết tổng và tỉ của hai số đó.

    Lúc này ta có sơ đồ tóm tắt như sau:

    Có thể chúng ta tóm tắt bằng sơ đồ đoạn thẳng, nếu chúng ta tóm tắt bằng sơ đồ như trên sẽ giúp học sinh hứng thú học tập hơn vì nó cụ thể hơn.

    Số bé là: 120 : 4 = 30

    Số lớn là: 130 – 30 =100

    Đáp số: Số bé 30

    Lưu ý: Khi tìm được số bé ta tìm số lớn bằng cách lấy tổng cũ trừ đi số bé.

    nếu lấy tổng mới trừ đi số bé thì phải cộng thêm 10 do mình bớt 10 ở số lớn để số lớn bằng 3 lần số bé.

    Hướng dẫn học sinh kiểm tra lại kết quả. Tổng bằng 130 và số lớn bằng 30 x 3 + 10

    : Hiện nay, tuổi cha hơn 3 lần tuổi con 10 tuổi. Tính tuổi mỗi người, biết tổng số tuổi của hai cha con hiện nay là 50 tuổi.

    Giáo viên hướng dẫn học sinh xác định gạch chân những vấn đề quan trọng trong bài toán

    Hiện nay, tuổi cha hơn 3 lần tuổi con 10 tuổi. Tính tuổi mỗi người, biết tổng số tuổi của hai cha con hiện nay là 50 tuổi.

    Để tuổi cha chỉ bằng 3 lần tuổi con thì ta phải bớt tuổi cha 10 tuổi. Lúc này tổng số tuổi của hai cha con sẽ giảm xuống 10 tuổi chỉ còn lại 40 tuổi ( Nếu ta thêm hoặc bớt bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm hoặc bớt đi bấy nhiêu đơn vị) Bài toán trở nên đơn giản

    Đây là bài toán cơ bản của dạng toán tìm hai số khi biết tổng và tỉ số của hai số đó.

    Lúc này ta có sơ đồ toám tắt như sau:

    Tuổi con hiện nay là :

    40 : 4 = 10 (tuổi)

    Tuổi cha hiện nay là

    50 – 10 = 40 ( tuổi)

    Đáp số : Em 10 tuổi

    Lưu ý: Khi tìm được tuổi con ta tìm tuổi cha bằng cách lấy tổng cũ trừ đi tuổi con.

    Nếu lấy tổng mới trừ đi tuổi con thì phải cộng thêm 10 tuổi do mình bớt 10 tuổi ở tuổi cha để tuổi cha bằng 3 lần tuổi con. (Nên hướng dẫn học sinh lấy tổng cũ trừ đi số bé)

    Hướng dẫn học sinh kiểm tra lại kết quả. Tổng bằng 50 tuổi và tuổi cha bằng

    10 x 3 + 10 ( hơn 3 lần tuổi con 10 tuổi)

    Để tuổi anh không còn kém 2 lần tuổi em 4 tuổi thì ta phải thêm vào tuổi anh 4 tuổi. Lúc này, tuổi anh bằng 2 lần tuổi em và tổng số tuổi của hai anh em sẽ tăng thêm 4 tuổi, tổng số tuổi hai anh em bằng 24 tuổi. Bài toán trở nên đơn giản hơn nhiều

    Đây là dạng bài toán mà chúng ta áp dụng tính chất của phép cộng

    Nếu ta thêm bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm bấy nhiêu đơn vị.

    Ta tóm tắt bài toán bằng sơ đồ như sau:

    Tuổi em hiện nay là:

    Tuổi anh hiện nay là :

    20 – 8 = 12 ( tuổi)

    Đáp số : Em 8 tuổi

    Cả ba bài toán này chúng ta đều vận dụng tính chất quan trọng của phép cộng

    – Nếu ta thêm hoặc bớt bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm hoặc bớt đi bấy nhiêu đơn vị.

    Còn rất nhiều bài toán khác vận dụng tính chất này nhưng trong phạm vi đề tài không thể nêu ra hết được nếu giáo viên vận dụng và hướng dẫn cho học sinh nắm được các tính chất này để giải toán thì các em tiếp thu kiến thức rất chủ động, xác định dạng bài và đưa ra được phương pháp giải rất nhanh, các em nắm được kiến thức rất chắc chắn và vận dụng rất sáng tạo.

    Cho học sinh đọc kĩ đề toán, gạch chân những từ quan trọng trong đề toán

    Một mảnh đất hình chữ nhật có nữa chu vi bằng 120m. Nếu bớt chiều dài 10mtăng chiều rộng 10m thì chiều dài gấp 3 lần chiều rộng. Tính chiều dài và chiều rộng của mảnh đất

    Nửa chu vi chính là tổng của hai cạnh của hình chữ nhật.

    Khi bớt chiều dài 10m thì tổng của hai cạnh giảm 10m. Khi tăng chiều rộng 10m thì tổng lại tăng thêm 10m. Như vậy, tổng không thay đổi vẫn bằng 120m. Chúng ta đã vận dụng tính chất của phép cộng

    – Nếu ta tăng số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị thì tổng số không thay đổi

    Lúc này bài toán trở nên rất đơn giản

    Bài toán thuộc dạng toán tìm hai số khi biết tổng và tỉ của hai số đó.

    Tổng bằng 120m. Tỉ số chiều dài gấp 3 lần chiều rộng

    Ta có thể tóm tắt bài toán bằng sơ đồ tóm tắt sau:

    Chiều rộng mảnh đất:

    120: 4 – 10 = 20(m) ( Do: nếu tăng chiều rộng 10m)

    Chiều dài mảnh đất:

    120 – 20 = 100(m)

    Đáp số: Chiều rộng 20m

    Chiều dài 100m

    Mới đọc bài toán chúng ta thấy bài toán khá trừu tượng, đối với học sinh thì càng khó hơn nhưng thất ra bài toán rất đơn giản. Khi gặp những bài toán này giáo viên cần giải thích và hướng dẫn cho học sinh thấy được: Khi chuyển từ kho A sang kho B 20 tấn thì tổng số thóc của hai kho vẫn không thay đổi vẫn bằng 120 tấn vì giảm kho A 20 tấn nhưng lại tăng ở kho B 20 tấn. Bài toán này chúng ta lại áp dụng tính chất của phép cộng : Nếu ta tăng số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị thì tổng số không thay đổi

    Số thóc ở kho B trước khi chuyển là:

    120 : 4 – 20 = 10 (tấn)

    Số thóc ở kho A trước khi chuyển là:

    120 – 10 = 110 ( tấn)

    Đáp số: Kho A 110 tấn

    Kho B 10 tấn

    Hướng dẫn học sinh kiểm tra lại kết quả có phù hợp với các dữ kiện của bài toán

    Khi chuyển kho A 20 tấn sang kho B thì kho A còn 110 – 20 = 90 (tấn) và kho B được 10 + 20 = 30 (tấn). Lúc này kho A gấp 3 lần kho B. Vậy bài toán ta đã làm đúng.

    Chúng ta xem tử số là số bé còn mẫu số là số lớn vì tử số bằng 13 còn mẫu số bằng 17

    Đây là bài toán có tính trừu tượng hơn hai bài toán trên. Khi gặp dạng bài toán này thì giáo viên hướng dẫn cho học sinh thấy được: Khi bớt số a ở tử số và thêm số a ở mẫu số thì tổng của tử số và mẫu số sẽ không thay đổi bằng 13 +17 = 30

    Vì như chúng ta đã biết: Nếu ta tăng số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị thì tổng số không thay đổi

    Theo đề bài, tử số 2 phần còn mẫu số 3 phần nghĩa là số bé bằng lần số lớn. Đây là bài toán tìm hai số khi biết tổng và tỉ của hai số đó tương tự như hai bài toán trên mà chúng ta đã giải.

    Ta có sơ đồ tóm tắt như sau:

    Tử số là: 30 : 5 x 2 = 12

    Mẫu số là: 30 – 12 = 18

    Số a là : 13 – 12 = 1 hoặc 18 – 17 = 1

    : Cho hai số thập phân: 14,78 và 2,87. Hãy tìm số A sao cho khi thêm A vào số nhỏ và bớt A ở số lớn ta tìm được hai số có tỉ số là 4.

    Khi thêm A vào số bé và bớt A ở số lớn thì tổng của hai số không thay đổi vẫn bằng 14,78 + 2,87 = 17,65 và số lớn gấp 4 lần số bé. Ta có sơ đồ tóm tắt như sau:

    Số bé là: 17,65 : 5 = 3,53

    Số lớn là : 17,65 – 3,53 = 14,12

    Dáp số : Số bé 3,53

    Cả 4 bài toán này đều vận dụng tính chất của phép cộng : Khi ta tăng số hạng này bao nhiêu đơn vị và bớt số hạng kia bấy nhiêu đơn vị thì giá trị của tổng vẫn không thay đổi. Khi gặp những bài toán này, giáo viên chỉ cần hướng dẫn cho học sinh thấy được sự đồng dạng trong các bài toán từ đó các em sẽ xác định được dạng toán và các em dễ dàng tìm được hướng giải bài toán nhanh và chính xác.

    Bài toán trở về bài toán tìm hai số khi biết tổng số và tỉ số của hai số đó.

    Giáo viên hướng dẫn học sinh vẽ sơ đồ đoạn thẳng :

    Tử số 108

    Tổng của tử số và mẫu số là:

    Khi thêm vào tử số bao nhiêu đơn vị và bớt ở mẫu số bao nhiêu đơn vị thì tổng của tử số và mẫu số vẫn không thay đổi nên vẫn là 108(Vẽ như sơ đồ trên)

    108 chia thành mấy phần bằng nhau ?

    Giá trị mỗi phần là:

    Tử số của phân số mới là:

    Mẫu số của phân số mới là:

    Phân số mới là:24/84

    Đem tử số và mẫu số phân số mới cùng chia cho 12 ta được phân số 2/7 vì:

    (24/12)/(84:12)=2/7

    Vậy số cần tìm là :

    24 – 19 = 5 (hoặc 89 – 84 = 5)

    Đây là dạng toán tìm 2 số khi biết tổng và hiệu của hai số đó nhưng hiệu bị ẩn và chúng ta cần phải tìm trước khi giải bài toán .

    Giáo viên hướng dẫn học sinh tóm tắt bằng sơ đồ đoạn thẳng .

    Thùng thư hai :

    84lit 398lít

    Thùng thứ hai

    Số nước mắm thùng thứ hai đựng được là ;

    (398 – 84 ) : 2 = 157 (lít)

    Số nước mắm thùng thứ nhất đựng được là:

    157 + 84 = 241 ( lít )

    Đáp số : Thùng thứ nhất 241 lít

    Thùng thứ hai 157 lít

    Giáo viên hướng dẫn học sinh làm xong phải thử lại xem kết quả có phù hợp với các dữ kiện bài toán hay không .

    Thùng thứ nhất 241 sau khi bớt 50 lít sang thung thứ hai thì thùng thứ nhất còn lại 191lit, thùng thứ hai sau khi thêm 50 lít của thùng thứ nhất thì thùng thứ hai có 398 -191 = 207

    Đối với bài toán này chúng ta có thể cho học sinh giải theo cách khác như sau :

    Khi lấy 50 lit ở thùng thứ nhất đổ sang thùng thứ hai thì tổng số nước mắm của hai thùng vẫn không thay đổi và bằng 398 lít. Lúc này, thùng thứ hai đựng nhiều hơn thùng thứ nhất 16 lít. Đây là bài toán tìm hai số khi biết tỏng và tỉ số của hai số đó.

    Sau khi chuyển ta có sơ đồ tóm tắt như sau :

    Thùng thứ nhất :

    Thùng thứ hai

    Thùng thứ nhất đựng số nước mắm là:

    ( 398 – 16 ) : 2 + 50 = 241 ( lit)

    Thùng thứ hai đựng được số nước mắm là :

    398 – 241 = 157 ( lit )

    Đáp số: Thùng thứ nhất : 241lit

    Thùng thứ hai : 157lít

    Mới thoáng đọc chúng ta thấy bài toán này chẳng khác gì bài toán đầu tiên. Sở dĩ như vậy là do tôi cố tình đưa ra những đề toán giống nhau để chúng ta dễ dàng phân biệt cách giải các dạng toán. Từ đó, giáo viên hệ thống được cho học sinh cách giải các dạng toán. Đối với bài toán này giáo viên hướng dẫn cho học sinh phân tích đề toán như sau

    Để thương bằng 3 có nghĩa là số lớn gấp 3 lần số bé mà không còn dư 10 thì ta phải bớt số lớn 10 đơn vị do đó hiệu sẽ giảm 10 đơn vị hiệu chỉ còn lại 120 đơn vị. ( Khi ta thêm hoặc bớt số bị trừ bao nhiêu đơn vị thì hiệu số sẽ tăng thêm hoặc giảm xuống bấy nhiêu đơn vị).

    Bài toán trở về dạng đơn giản hơn.

    Ta có thể tóm tắt bằng sơ đồ như trên:

    Số bé 120

    Hiệu số phần bằng nhau là:

    Đáp số: Số bé 60

    Lưu ý : Khi tìm được số bé, muốn tìm số lớn ta lấy hiệu cũ cộng với số bé. Nếu lấy hiệu mới cộng với số bé thì ta phải cộng thêm 10 vì trước đó ta bớt ở số lớn 10 để số lớn gấp 3 lần số bé. ( Nên hướng dẫn học sinh lấy hiệu cũ cộng thêm số bé)

    Yêu cầu học sinh kiểm tra lại cách làm và kết quả. Số lớn 190 bằng 60 x 3 + 10 vậy bài toán ta làm đúng.

    Để tuổi cha chỉ bằng 3 lần tuổi con thì ta phai bớt ở tuổi cha 5 tuổi lúc đó cha chỉ còn hơn con 30 tuổi. ( Khi ta thêm hoặc bớt số bị trừ bao nhiêu đơn vị thì hiệu số sẽ tăng thêm hoặc giảm xuống bấy nhiêu đơn vị).

    Bài toán trở nên đơn giản hơn nhiều.

    Ta có sơ đồ sau khi bớt tuổi của cha 5 tuổi

    Tuổi con là : 30 : 2 = 15 ( tuổi)

    Tuổi cha là : 35 + 15 = 50 ( tuổi)

    Đáp số: Tuổi con 15 tuổi

    Tuổi cha 50 tuổi

    Lưu ý : Khi tìm được số bé, tìm số lớn bằng cách lấy hiệu cũ cộng với số bé. Nếu lấy hiệu mới cộng với số bé thì phải cộng thêm 5 tuổi vì trước đó chúng ta đã bớt của cha 5 tuổi để tuổi cha chỉ bằng 3 lần tuổi con.

    Mới đọc, chúng ta thấy bài toán rất khó nhưng thật ra bài toán cũng không phải là quá khó như chúng ta tưởng. Nếu được giáo viên hướng dẫn đúng cách thì bất cứ học sinh nào cũng có thể giải được những bài toán này. Đây là bài toán mà chúng ta vận dụng tính chất trong phép trừ. Nếu ta bớt ở số trừ bao nhiêu đơn vị thì hiệu số lại tăng lên bấy nhiêu đơn vị và ngược lại.

    Để tuổi con bằng tuổi cha thì phải bớt ở tuổi con 5 tuổi, lúc đó hiệu số tuổi của hai cha con sẽ tăng lên 5 tuổi chứ không phải giảm xuống 5 tuổi. Hiệu mới bằng 36 tuổi. Ta có sơ đồ tóm tắt như sau :

    Tuổi con sau khi bớt là :

    36 : 3 x 2 = 24 ( tuổi)

    Tuổi con hiện nay là :

    29 + 5 = 29 ( tuổi )

    Tuổi cha hiện nay là :

    29 + 31 = 60 ( tuổi )

    Đáp số : Tuổi con 29 tuổi

    Tuổi cha 60 tuổi

    Yêu cầu học sinh kiểm trâ lại kết quả va cách làm cua mình. Tuổi cha 60 tuổi chia 5 phần rồi nhân 2 được 24 tuổi. Tuổi con bằng 29 tuổi bằng 24 +5. vậy bài toán ta làm đúng.

    Lưu ý : Khi tìm được tuổi con, tìm tuổi cha bằng cách lấy hiệu cũ cộng với tuổi của con ( tìm số lớn lấy hiệu cũ cộng với số bé)

    Như vậy, sau khi thêm, mẫu số vẫn hơn tử số 70 đơn vị. Lúc này, phân số mới có tử số là 1, mẫu số là 3.

    Như thế , ta có sơ đồ phân tích như sau :

    Tử số 70

    Bài toán trở về bài toán: Tìm hai số khi khi biết hiệu số và tỉ số của chúng

    Mẫu số hơn tử số là:

    Mẫu số của phân số mới là:

    Phân số mới là : 35/105

    Vậy số phải tìm là:

    Như vậy, qua các bài toán ở trên chúng ta thấy rằng cá tính chất của các phép tính vô cùng quan trọng khi đề toán đưa ra : Nếu cùng thêm hoặc cùng bớt cả hai đại lượng thì chúng ta chọn dạng toán hiệu hai số không thay đổi. Nếu thêm ở đại lượng thứ nhất và bớt ở đại lượng thứ hai cùng một số thì chúng ta chọn dạng toán tổng và tỉ vì tổng của nó sẽ không thay đổi

    Ví dụ 1: Cho phân số 29/99. Hãy tìm một số sao cho khi đem tử số và mấu số của phân số đã cho cộng với số đó ta được phân số tối giản 1/3.

    Đây là bài toán hiệu và tỉ của hai số vì hiệu số không thay đổi

    Ví dụ 2: Hai kho thóc chứa 120 tấn thóc. Nếu chuyển từ kho A sang kho B 20 tấn thí số thóc ở kho A gấp 3 lần số thóc kho B. Tính số thóc mỗi kho trước khi chuyển.

    Đây là bài toán tổng và tỉ số của hai số vì tổng số của hai đại lượng không đổi

    : Một mảnh đất hình chữ nhật có diện tích bằng 5400m2. Nếu tăng chiều dài thêm 10m thì diện tích tăng thêm 600m2. Tính chiều rộng mảnh đất.

    Trong phép nhân : Nếu ta thêm hoặc bớt ở một thừa số bao nhiêu đơn vị thì tích mới cũng tăng thêm hoặc giảm xuống bao nhiêu lần thừa số còn lại.

    Ta xem chiều dài mảnh đất là thừa số thứ nhất thì chiều rộng là thừa số thứ hai. Khi ta tăng chiều dài thêm 10m thì tích mới cũng tăng thêm 10 lần chiều rộng.

    Chiều rộng mảnh đất là :

    Trong phép nhân : Nếu ta tăng lên hoặc giảm xuống một thừa số bao nhiêu lần thì tích mới cũng tăng lên hoặc giảm xuống bấy nhiêu lần.

    Ta xem cạnh đáy của hình bình hành là thừa số thứ nhất thì chiều cao của hình bình hành là thừa số thứ hai. Như vậy: Khi tăng cạnh đáy lên 3 lần thì diện tích cũng tăng lên 3 lần.

    Diện tăng tăng thêm là :

    Trong phép nhân : Nếu ta tăng lên hoặc giảm xuống một thừa số bao nhiêu lần thì tích mới cũng tăng lên hoặc giảm xuống bấy nhiêu lần.

    Cạnh hình vuông tăng lên 3 lần thì diện tích hình vuông tăng lên 9 lần

    Diện tích hình vuông tăng thêm là :

    Diện tích hình vuông mới là :

    Khi tăng chiều rộng lên 5 lần thì diện tích tăng thêm 5 lần, khi giảm chiều dài 2 lần thì diện tích giảm xuống 2 lần.

    Trong phép nhân : Nếu ta tăng lên hoặc giảm xuống một thừa số bao nhiêu lần thì tích mới cũng tăng lên hoặc giảm xuống bấy nhiêu lần.

    Diện tích hình chữ nhật mới là :

    30cm 5cm

    Trong phép nhân : Nếu ta thêm hoặc bớt ở một thừa số bao nhiêu đơn vị thì tích mới cũng tăng thêm hoặc giảm xuống bao nhiêu lần thừa số còn lại.

    Trước tiên chúng ta phải tìm chiều cao của hình thang bằng cách lấy diện tích tăng thêm chia cho đoạn kéo dài của đáy lớn. Tiếp theo chúng ta tìm diện tích của hình thang cũ theo công thức tính diện tích của hình thang

    * Đối với những dạng toán này chúng ta có thể hướng dẫn học sinh phân tích bài toán bằng sơ đồ tư duy như sau:

    Chiều cao hình thang là:

    Diện tích hình thang là:

    Ta xem cạnh đáy là thừa số thứ nhất, chiều cao là thừa số thứ hai. Khi tăng cạnh đáy của hình tam giác lên 1,5 lần thì diện tích hình tam giác cũng tăng lên 1,5 lần.

    Diện tích hình tam giác mới là:

    Diện tích tăng thêm là:

    : Cho hình tam giác có diện tích bằng 150cm2. Nếu kéo dài cạnh đáy thêm 5 cm thì diện tích tăng thêm 50cm2. Tính chiều cao và cạnh đáy của tam giác.

    Ta có công thức tính diện tích tam giác : S = a x h : 2

    Do chiều cao không thay đổi nên khi ta tăng cạnh đáy thêm 5cm thì tích sẽ tăng thêm 50 cm 2 Chiều cao hình tam giác ta lấy diện tích tăng thêm nhân 2 rồi chia cho 5 sau đó chúng ta tìm cạnh đáy. Chúng ta bài toán có thể phân tích như sau:

    X 2 X 2

    Chiều cao hình tam giác:

    Cạnh đáy hình tam giác là:

    150 x 2 : 20 = 15(cm)

    Đáp số: Chiều cao 20cm

    Cạnh đáy 15 cm

    – Nếu ta tăng thừa số thứ nhất lên bao nhiêu lần và giảm thừa số thứ hai bấy nhiêu `

    Chúng ta có rất nhiều bài toán khác có dạng tương tự như vậy nhưng do phạm vi đề tài không thể trình bày ra hết được chẳng hạn như những bài toán

    Khi tăng cạnh hình vuông lên 25% thì diện tích hình vuông tăng thêm bao nhiêu?

    Khi tăng bán kính hình tròn lên 2 lần thì diện tích hình tròn tăng lên bao nhiêu?

    Khi tăng cạnh của một hình lập phương lên 3 lần thì diện tích xung quanh, diện tích toàn phần và thể tích của hình lập phương đó tăng thêm bao nhiêu?

    Mỗi chúng ta, khi đứng lên bục giảng, ai cũng luôn mong muốn cho mình một phương pháp dạy tốt nhất để mang lại chất lượng dạy học cao nhất. Trong giới hạn phạm vi nhỏ bé, Đề tài đưa ra một số kinh nghiệm và giải pháp để giúp học sinh giải tốt một số dạng toán có lời văn trong chương trình toán lớp 5, đồng thời chỉ ra một số hạn chế mà đã từ lâu hầu hết giáo viên không hề quan tâm đến, chưa hệ thống được nên việc hướng dẫn học sinh giải các dạng toán có lời văn trở nên nặng nề. Do đó, việc tiếp thu kiến thức của các em không được chủ động và thiếu chắc chắn.

    Tôi thiết nghĩ: Dạy học là một phạm trù rộng lớn đặc biệt là giải toán có lời văn ở bậc tiểu học. Nó chứa đựng một chuỗi hệ thống các quan điểm, phương pháp và kĩ thuật

    dạy học. Vì thế, bản thân luôn xác định đổi mới phương pháp dạy học toán ở bậc tiếu học không hề đơn giản và cũng không thể thực hiện trong ngày một ngày hai. Vì thế, khi nghiên cứu đề tài này, bản thân tôi chỉ hi vọng góp một phần nhỏ tháo gỡ một vài khía cạnh để góp phần nâng cao chất lượng dạy học toán tại trường Tiểu học Ea Dah xã Ea Dah – Krông Năng – Đăk Lăk . Tuy nhiên, Bản thân tôi nhận thấy đây là một số giải pháp tuyệt vời có tính hệ thống, giúp giáo viên hệ thống được bản chất của một số dạng toán. Từ đó, sử dụng phương pháp hợp lí giúp học sinh hiểu nhanh nắm chắc các phương pháp giải một số dạng toán có lời văn, giúp các em nắm được kiến thức rất chủ động, giúp các em chọn lựa cách giải chính xác. Các em không còn lúng túng lo sợ trước những bài toán có lời văn. Tạo ra sự hứng thú, say mê trong học tập và tiếp thu nội dung bài một cách chủ động giúp các em vận dụng giải các dạng toán một cách sáng tạo.

    Do hạn chế về năng lực và kinh nghiệm cùng với sự thiếu hụt về mặt thời gian và tầm nhìn, tôi biết chắc đề tài vẫn còn chứa đựng quá nhiều khiếm khuyết. Vì vậy, rất mong được sự quan tâm tham gia bàn bạc của quý cấp quản lí và các đồng nghiệp. Bản thân tôi xin chân thành biết ơn sâu sắc.

    Bấm vào đây để tải về

    --- Bài cũ hơn ---

  • Hướng Dẫn Giải Các Dạng Toán Lớp 5
  • Tài Liệu Ôn Tập Tổng Hợp Các Dạng Bài Toán Hình Học Lớp 5
  • 168 Bài Toán Bồi Dưỡng Hsg Lớp 5
  • 8 Dạng Toán Về Chuyển Động Dành Cho Học Sinh Lớp 5 (Dạng 3)
  • 300 Câu Hỏi Trắc Nghiệm Toán Lớp 5 Có Đáp Án
  • Tuyển Tập Các Lời Giải Hay Cho Các Bài Toán Hình Học Phẳng Khó

    --- Bài mới hơn ---

  • Soạn Bài Bài Ca Ngất Ngưởng (Chi Tiết)
  • Soạn Bài Bài Ca Ngất Ngưởng
  • Soạn Văn Lớp 11: Bài Ca Ngất Ngưởng
  • Soạn Bài: Bài Ca Ngất Ngưởng (Nguyễn Công Trứ)
  • Đọc Hiểu Bài Ca Ngất Ngưởng
  • Tuyển tập các lời giải hay cho các bài toán hình

    học phẳng khó(Số 1)(Tháng 9/2016)

    Đôi điều về chuyên mục: Trong tuyển tập lớn này, tôi sẽ mỗi tháng đưa ra năm

    lời giải cho năm bài toán khác nhau mà tôi cho là hay. Sau một tháng nhận email

    phản hồi của các bạn(các lời giải khác mà các bạn nghĩ là hay hơn,mở rộng các bài

    toán,…), tôi sẽ biên tập lại chúng để viết chúng trong phần phản hồi bạn đọc ở số

    tiếp theo. Cuối mỗi tháng sẽ có list bài của tháng sau để các bạn tiện theo dõi.

    Bài toán 1(Nguyễn Văn Linh): Cho tam giác ABC nội tiếp đường tròn (O) có

    trực tâm H. P là một điểm thuộc cung BC không chứa A của (O)(P 6= B, C).P 0 đối

    xứng P qua BC. (OP P 0 ) cắt AP tại G. Chứng minh rằng trực tâm tam giác AGO

    nằm trên HP 0 .

    Lời giải(Nguyễn Duy Khương): Gọi AH cắt (AGO) tại điểm J khác A. Thế thì:

    ∠JOG = ∠HAG = ∠GP P 0 (do AH//P P 0 )=180◦ − ∠GOP 0 do đó O, P 0 , J thẳng

    hàng. Lại có: ∠GJO = ∠P AO = ∠GP O = ∠GP 0 O do đó tam giác GJP 0 cân tại

    G. Lại có: ∠JGP 0 = ∠AOP = 2∠ACP . Lại có: ∠AHP 0 = ∠HP P 0 = ∠ACP (do

    1

    nếu gọi AH cắt lại (O) tại D thì HDP P 0 là hình thang cân nên dĩ nhiên ∠HP P 0 =

    ∠ACP ) do đó G là tâm (JHP 0 ). Ta gọi K là giao (JHP 0 ) cắt (AGO) tại điểm K

    khác J.

    Lại có: ∠GKO = ∠OAG = ∠GP O = ∠GP 0 O do đó ∠OP 0 K = ∠OKP 0 nên

    OK = OP 0 vậy khi đó dĩ nhiên K đối xứng P 0 qua GO từ đó GK = GH = GP 0 mà

    ∠GHJ = ∠GJH = 180◦ − ∠AJG = ∠AOG = ∠AKG vậy thì K cũng đối xứng H

    qua AG. Vậy theo định lí về đường thẳng Steiner thì trực tâm tam giác AGO nằm

    trên HP 0 (đpcm).

    Nhận xét: Ở lời giải trên tác giả đã có một lời giải khác với lời giải gốc của người ra

    đề. Điểm thú vị của lời giải trên chính là việc không cần nhất thiết chỉ ra trực tâm

    của tam giác đó.

    Bài toán 2(Kiểm tra trường hè Titan tháng 8/2016): Cho tam giác ABC nội

    tiếp đường tròn (O) có: H là trực tâm và AM là trung tuyến tam giác ABC. AM

    cắt lại (O) tại điểm N . Ba đường thẳng: qua H vuông góc AN, BC, KN cắt nhau

    tạo thành tam giác XY Z. Chứng minh rằng: (XY Z) tiếp xúc (O).

    Lời giải(Nguyễn Duy Khương):

    Gọi tia M H cắt (O) tại điểm J, gọi AD là đường cao của tam giác ABC. Hiển nhiên

    ta có: AJ, HP, M D là các đường cao của tam giác AHM suy ra AJ, HP, BC đồng

    quy tại điểm Y . Hay là A, J, Y thẳng hàng.

    Ta đi chứng minh rằng J thuộc (XY Z). Ta có: HDY J nội tiếp do đó XY JZ nội

    tiếp khi và chỉ khi:

    2

    (JX, KX) ≡ (AH, JH)(modπ) hay là tứ giác JHKX nội tiếp.

    Lại có: (JK, XK) ≡ (JA, N A) ≡ (JD, Y D) ≡ (JH, Y H)(modπ) vậy ta có: JHKX

    nội tiếp hay là J thuộc (XY Z). Vậy tức là J thuộc (XY Z) và (O). Vì J thuộc (O) và

    (XY Z) mà A, J, Y thẳng hàng nên khi gọi Y G, AL là các đường kính (XY Z) và (O)

    thì GJL ⊥ Y A, ta có: ∠JGY = ∠JXY = ∠JKA = ∠JLA do đó GY kAL vậy hiển

    nhiên 4GJY ∼ 4AJL do I, O lần lượt là trung điểm GY và AL nên ∠IJY = ∠OJA

    hay là thu được I, J, O thẳng hàng hay (XY Z) tiếp xúc (O)(đpcm).

    Nhận xét: Bài toán này hay nhưng không quá khó rất phù hợp để lấy làm bài thi

    trong 1 đề kiểm tra định kì. Ở bài toán trên ta thấy được tiếp điểm J sinh ra cực kì

    hay và hợp lí. Cách giải trên tuy dài hơn lời giải gốc xong lại thể hiện tư duy chứng

    minh tiếp xúc rất hay đó là sử dụng vị tự.

    Độc giả có thể tham khảo lời giải gốc và của bài toán mở rộng ở đây .

    Lời giải trên được tác giả đề nghị không phải là ngắn gọn nhất. Có thể kể đến ý

    tưởng biến đổi tỉ số phương tích của tác giả Mẫn Bá Tuấn-học sinh chuyên Toán

    THPT chuyên ĐHSP Hà Nội. Ở đây xin nêu cách này bởi sự khai thác triệt để

    giả thiết tiếp xúc trong đề bài.

    Các bài toán đề nghị tháng sau

    :

    7

    Bài toán 6(Hà Nội TST 2022-2016): Cho đường tròn đường kính AB. Lấy điểm

    C trên nửa đường tròn này sao cho 90◦ < ∠AOC < 180◦ . Lấy K là 1 điểm thay đổi

    trên đoạn OC. Vẽ các tiếp tuyến AD, AE đến đường tròn (K; KC). Chứng minh

    rằng DE, AC, BK đồng quy tại 1 điểm.

    Bài toán 7(Trần Quang Hùng-T12/466-THTT): Cho tam giác ABC nhọn

    không cân nội tiếp đường tròn (O). Lấy P là 1 điểm thuộc tam giác ABC sao

    cho AP vuông góc BC. Kẻ P E, P F lần lượt vuông góc AB, AC( E, F thuộc AB

    và AC). Đường tròn ngoại tiếp tam giác AEF cắt lại (O) tại G. Chứng minh rằng

    GP, BE, CF đồng quy tại 1 điểm.

    Bài toán 8(Trích HNEU TST 2014-2015): Cho tam giác ABC có các đường

    cao AD, BE, CF . Các đường tròn đường kính AB và AC cắt các tia DF và DE

    tại các điểm Q và P . Gọi N là tâm ngoại tiếp tam giác DEF . Chứng minh rằng:

    AN ⊥ P Q.

    Bài toán 9(Đề thi chọn HSG khối 10,chuyên ĐHSP,2015-2016):Cho tứ giác

    ABCD nội tiếp đường tròn (O). M, N lần lượt là trung điểm AB và CD. Giả sử

    AD cắt BC tại E và 2 đường chéo cắt nhau tại điểm F . EF cắt AB và CD lần lượt

    tại các điểm P và Q.

    a) Chứng minh rằng M, N, P, Q nội tiếp đường tròn tâm T .

    b) Chứng minh rằng OT, N P, M Q đồng quy.

    Bài toán 10(Nguyễn Duy Khương): Cho tam giác ABC sao cho AB + AC =

    2BC. Tam giác nội tiếp trong đường tròn (O) và ngoại tiếp đường tròn (I). (I) tiếp

    xúc BC, CA, AB tại D, E, F . AI cắt lại đường tròn (O) tại J khác A. Một đường

    thẳng d qua A song song với BC cắt EF tại M .Chứng minh rằng:∠JDM = 90◦ .

    8

    1

    Lời giải 1(Nguyễn Duy Khương): Gọi BK cắt lại (O) tại điểm thứ hai J. Gọi

    JA cắt DE tại điểm N . Do ∠KJA = ∠KDA = 90◦ do đó tứ giác JADE nội tiếp.

    Do (O) tiếp xúc (K) nên áp dụng tính chất trục đẳng phương thì tiếp tuyến chung

    tại C của (O), (K),DE và JA đồng quy tại 1 điểm N . Gọi DE cắt BK tại điểm M .

    Kẻ tiếp tuyến thứ hai N S tới (K) thế thì do N C đã là tiếp tuyến tới (K) nên ta có:

    DSCE là 1 tứ giác điều hoà do đó hiển nhiên là ta có: A, S, C thẳng hàng. Gọi M

    là giao điểm của BK và DE. Gọi I là trung điểm DE.

    Do M là trực tâm tam giác AN K nên: M N.M I = M J.M K = M D.M E(do

    A, J, K, D, E đồng viên). Vậy ta thu được: (N M, DE) = −1(theo hệ thức M aclaurin)

    suy ra: C(N M, DE) = −1 mà ở trên ta đã chỉ ra được: C(N S, DE) = −1. Do đó:

    S, C, M thẳng hàng. Vậy AC, BK, DE đồng quy tại điểm M (đpcm).

    2

    --- Bài cũ hơn ---

  • Công Nghệ 11 Bài 3: Thực Hành Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Lý Thuyết Công Nghệ 10 Bài 52: Thực Hành: Lựa Chọn Cơ Hội Kinh Doanh (Hay, Chi Tiết).
  • Thực Hành: Lực Chọn Cơ Hội Kinh Doanh Trang 161 Sgk Công Nghệ 10
  • Bài 4: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Tòan Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Soạn Bài Ý Nghĩa Văn Chương (Chi Tiết)
  • Các Bài Toán Có Lời Giải

    --- Bài mới hơn ---

  • Giải Toán Lớp 6 Bài 5: Phép Cộng Và Phép Nhân
  • Các Dạng Toán Về Phép Cộng Và Phép Nhân
  • Tóm Tắt Kiến Thức Toán Lớp 6 Bài 5: Phép Cộng Vàphép Nhân
  • Đáp Án Sách Mai Lan Hương Lớp 8
  • Đáp Án Sách Mai Lan Hương Lớp 10
  • Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối.

    Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá.

    a. Tính số học sinh mỗi loại của lớp.

    b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp.

    CÁC BÀI TOÁN CÓ LỜI GIẢI – LỚP 6 Bài 1: Lớp 6A có 40 học sinh.Cuối năm số học sinh loại giỏi chiếm 10% tổng số học sinh cả lớp.Số học sinh khá bằng số học sinh loại giỏi. Còn lại là học sinh trung bình. Tính số học sinh mỗi loại? HD: Số học sinh giỏi là: – Số học sinh khá là: – Số học sinh trung bình là: Đáp số: Giỏi: 4 hs Khá: 6 hs Trung Bình: 30 hs Bài 2: Khối 6 của một trường có tổng cộng 90 học sinh. Trong dịp tổng kết cuối năm thống kê được: Số học sinh giỏi bằng số học sinh cả khối, số học sinh khá bằng 40% số học sinh cả khối. Số học sinh trung bình bằng số học sinh cả khối, còn lại là học sinh yếu kém. Tính số học sinh mỗi loại. Số học sinh giỏi của trường là: (học sinh) – Số học sinh khá của trường là: (học sinh) – Số học sinh trung bình của trường là: (học sinh) – Số học sinh yếu của trường là:90 – (15 + 36 + 30) = 9 (học sinh) Bài 3: Ở lớp 6B số HS giỏi học kì I bằng số HS cả lớp. Cuối năm học có thêm 5 HS đạt loại giỏi nên số HS giỏi bằng số HS cả lớp. Tính số HS của lớp 6A? Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối. Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá. a. Tính số học sinh mỗi loại của lớp. b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp. Bài 6: Một đội công nhân sửa chữa một đoạn đường trong ba ngày. Ngày thứ nhất sửa 59 đoạn đường, ngày thứ hai sửa 14 đoạn đường. Ngày thứ ba sửa 7m còn lại. Hỏi đoạn đường cần sửa dài bao nhiêu mét. Bài 7: Lớp 6A có 40 học sinh gồm 3 loại: Giỏi, khá và trung bình. Số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng số học sinh còn lại a) Tính số học sinh giỏi, khá, trung bình của lớp 6A b) Tính tỷ số phần trăm của số học sinh trung bình so với học sinh cả lớp Giải a) – Số học sinh giỏi của lớp 6A là: (học sinh) số học sinh còn lại là 40 – 5 = 35 (học sinh) – Số học sinh trung bình của lớp 6A là: (học sinh) – Số học sinh khá của lớp 6A là: 35 -15 = 10 (học sinh) b) % = 35% Bài 8: Kết quả học lực cuối học kỳ I năm học 2012 – 2013 cuả lớp 6A xếp thành ba loại: Giỏi; Khá; Trung bình. Biết số học sinh khá bằng số học sinh giỏi; số học sinh trung bình bằng số học sinh giỏi. Hỏi lớp 6A có bao nhiêu học sinh; biết rằng lớp 6A có 12 học sinh khá? HD: Số học sinh giỏi của lớp 6A là: (học sinh) Số học sinh trung bình của lớp 6A là: (học sinh) Tổng số học sinh của lớp 6A là: (học sinh) Đáp số: 36 học sinh Bài 9: Biết diện tích của một khu vườn là 250m2. Trên khu vườn đó người ta trồng các loại cây cam, chuối và bưởi. Diện tích trồng cam chiếm 40% diện tích khu vườn. Diện tích trồng chuối bằng diện tích trồng cam. Phần diện tích còn lại là trồng bưởi. Hãy tính: Diện tích trồng mỗi loại cây ; Tỉ số diện tích trồng cam và diện tích trồng bưởi ; Tỉ số phần trăm của diện tích trồng cam và diện tích trồng chuối. Bài 10: Một mãnh vườn hình chữ nhật có chiều rộng là 20 m và chiều dài bằng 1,5 lần chiều rộng . a) Tính diện tích mãnh vườn. b) Người ta lấy một phần đất vườn để trồng cây ăn quả, biết rằng diện tích trồng cây ăn quả là 180m2 . Tính diện tích trồng cây ăn quả. c) Phần diện tích còn lại người ta trồng hoa. Hỏi diện tích trồng hoa chiếm bao nhiêu phần trăm diện tích mãnh vườn. Bài 11: Một trường học có 120 học sinh khối 6 gồm ba lớp : lớp 6A1 chiếm số học sinh khối 6. Số học sinh lớp 6A2 chiếm số học sinh khối 6. Số còn lại là học sinh lớp 6A3 .Tính số học sinh mỗi lớp. Bài 12 : Một lớp học có 44 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh trung bình chiếm số học sinh cả lớp. Số học sinh khá bằng số học sinh còn lại. Tính số học sinh giỏi của lớp đó ? Bài 13 : Lớp 6A có 45 học sinh. Trong đó, số học sinh trung bình chiếm số học sinh cả lớp. Tổng số học sinh khá và giỏi chiếm số học sinh trung bình, còn lại là học sinh yếu kém. Tính số học sinh yếu kém của lớp 6A? Bài 14 : Tuấn có tất cả 54 viên bi gồm ba màu là xanh, cam, tím. Trong đó, số viên bi xanh chiếm tổng số viên bi, số viên bi cam chiếm số viên bi còn lại. Tính xem Tuấn có bao nhiêu viên bi màu tím ? Bài 15 : Một lớp học có 40 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh khá chiếm số học sinh cả lớp. Số học sinh giỏi chiếm số học sinh còn lại. Tính số học sinh trung bình của lớp đó ? Bài 16: Lớp 6A có 40 học sinh. Điểm kiểm tra Toán gồm 4 loại: Giỏi, khá, trung bình và yếu. Trong đó số bài đạt điểm giỏi chiếm tổng số bài, số bài đạt điểm khá chiếm số bài đạt điểm giỏi. Loại yếu chiếm số bài còn lại. a) Tính số bài kiểm tra mỗi loại của lớp. b) Tính tỉ số phần trăm học sinh đạt điểm trung bình, yếu so với học sinh cả lớp

    --- Bài cũ hơn ---

  • Đáp Án Ngữ Văn Lớp 6 Tập 2
  • Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Năm Học 2014
  • Tham Khảo Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Tuyển Chọn Hay Nhất 2022
  • Đáp Án Lưu Hoằng Trí Unit 1 Lớp 6
  • Lưu Hoằng Trí Lớp 6 Có Đáp Án
  • Các Bài Toán Điển Hình Lớp 5

    --- Bài mới hơn ---

  • Đề Thi Học Kì 2 Môn Lịch Sử
  • Đề Và Đáp Án Đề Kiểm Tra Lịch Sử & Địa Lý Lớp 5 Học Kì 1 Năm Học…
  • Sách Giải Bài Tập Toán Lớp 5 Luyện Tập Trang 21
  • Giải Bài Tập Trang 21 Sgk Toán 5, Bài 1, 2, 3, 4
  • Lời Giải Vở Bài Tập Tiếng Việt Lớp 5 (Tập 1)
  • Published on

    CÁC BÀI TOÁN ĐIỂN HÌNH LỚP 5

    1. 2. a. Nội dung: Dạng toán “Tìm hai số khi biết tổng và hiệu của hai số đó” đã được học ở lớp 4. Vì vậy, trong chương trình Toán 5 gồm có 6 bài, không trình bày riêng mà chỉ phân bố rải đều trong chương trình và ở phần ôn tập cuối năm, mục đích là để củng cố kiến thức thường xuyên cho học sinh. b. Phương pháp giảng dạy: Khi dạy dạng toán này, giáo viên cần tập trung học sinh vào việc nhận dạng bài toán và nêu cách giải. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán bằng sơ đồ đoạn thẳng. Việc hướng dẫn học sinh tóm tắt bài toán bằng sơ đồ đoạn thẳng là bước quan trọng nhất. Nếu tóm tắt đầy đủ và chính xác sẽ giúp cho các em dễ dàng nhận ra mối liên hệ giữa các yếu tố của bài toán đã cho. Từ đó, các em sẽ tìm ra được cách giải thuận lợi hơn. Chẳng hạn: Một mảnh đất hình chữ nhật có chu vi 120m. Chiều dài hơn chiều rộng 10m. Tính diện tích mảnh đất đó. Điều then chốt ở đây là học sinh phải hiểu được Tổng của chiều dài và chiều rộng chính là nửa chu vi; chiều dài chính là số lớn; chiều rộng chính là số bé. Khi nhận biết được điều này, học sinh sẽ dễ dàng tìm ra được chiều dài và chiều rộng. Khi đó, giáo viên cần lưu ý thêm là: Sau khi tìm được chiều dài, chiều rộng thì còn phải tính diện tích mảnh đất. Tóm tắt: Chiều dài: Chiều rộng: 10m Diện tích: …….m2 ? Bài giải: Chiều dài mảnh đất hình chữ nhật là: (60 + 10) : 2 = 35 (m). Chiều rộng mảnh đất hình chữ nhật là: 35 – 10 = 25 (m). Diện tích mảnh đất hình chữ nhật là: 35 × 25 = 875 (m2 ). Đáp số : 875 m2 . 3. Bài toán về “Tìm hai số khi biết tổng và tỉ số của hai số đó”: a. Nội dung: 120 : 2 = 60 (m)
    2. 3. Dạng toán này cũng đã được học ở lớp 4. Trong chương trình Toán 5, dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” chỉ gồm có 5 bài và được phân bố rải đều và trong chương trình ôn tập cuối năm, mục đích là giúp học sinh củng cố và rèn luyện kỹ năng vận dụng. Từ đó, các em có thể tiếp cận và giải được các bài tập nâng cao nhằm mở rộng thên kiến thức. b. Phương pháp giảng dạy: Khi dạy dạng toán này, cũng tương tự như dạng toán 2, giáo viên cần tập trung học sinh vào việc nhận dạng bài toán và nêu cách giải. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán bằng sơ đồ đoạn thẳng. Chẳng hạn: Lớp 5A có 35 học sinh. Số học sinh nam bằng 4 3 số học sinh nữ. Hỏi số học sinh nữ hơn số học sinh nam là bao nhiêu em? Điều quan trọng ở đây là học sinh phải nhận dạng và tóm tắt được bài toán bằng sơ đồ đoạn thẳng.Vì vậy trước khi dạy các bài toán thuộc loại toán này, giáo viên cần củng cố, khắc sâu cho học sinh về tỉ số (đã được học ở lớp 4). Sau đó, giáo viên cần lưu ý cho học sinh là: dựa theo sơ đồ đoạn thẳng để giải bài toán. Tóm tắt: Nam: ? em Nữ : Bài giải: Theo sơ đồ, tổng số phần bằng nhau là: 3 + 4 = 7 (phần). Số học sinh nam của lớp 5A là: 35 : 7 × 3 = 15 (học sinh). Số học sinh nữ của lớp 5A là: 35 – 15 = 20 (học sinh). Số học sinh nữ nhiều hơn số học sinh nam là: 20 – 15 = 5 (học sinh). Đáp số : 5 học sinh. Ngoài ra, giáo viên có thể gợi ý để học sinh suy nghĩ và tìm cách giải khác. Chẳng hạn: Theo sơ đồ, số học sinh nữ nhiều hơn số học sinh nam số phần là: 4 – 3 = 1 (phần). Số học sinh nữ nhiều hơn số học sinh nam là: 35 : 7 = 5 (học sinh). 35 học sinh
    3. 5. Trong chương trình Toán 5, Dạng toán này là dạng toán mới. Dạng toán này gồm 20 bài toán được trình bày thành 2 bài dạy (tiết 16,17) và rải đều cho các tiết học sau đó và trong chương trình ôn tập cuối năm. Tiết 16 là tiết học giúp học sinh nhận dạng bài toán và trang bị cho học sinh 2 cách giải của dạng toán này. Tiết 17 là tiết luyện tập nhằm giúp học sinh rèn luyện kĩ năng thực hành. Các bài tập rải đều cho các bài học sau đó nhằm giúp các em rèn luyện kĩ năng, kĩ xảo cũng như mở rộng và nâng cao kiến thức. b. Phương pháp giảng dạy: Đây là dạng toán thường gặp và mang tính thực tế cao. Các em rất có hứng thú với dạng toán này. Vì vậy, khi dạy dạng toán này, giáo viên cần tập trung vào việc lấy ví dụ gần gũi, sát thực tế ở địa phương để học sinh vừa học tập vừa có thể vận dụng trong cuộc sống hằng ngày. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán sao cho ngắn gọn và đễ hiểu. Việc giải bài toán được thực hiện theo hai cách: cách “rút về đơn vị”, cách “tìm tỉ số”. Trong mỗi cách dạy cần thực hiện theo các bước cơ bản . Bước quan trong nhất là bước “rút về đơn vị” (hoặc “Tìm tỉ số”). Do vậy, khi dạy dạng toán này cần khắc sâu cho học sinh mỗi bước này trong mỗi cách giải của bài toán. Mặt khác, cũng cần lưu ý cho học sinh là: chỉ cần trình bày một trong hai cách giải của bài toán. Ví dụ : Một ô-tô trong 2 giờ đi được 90km. Hỏi trong 4 giờ ô-tô đó đi được bao nhiêu ki-lô-mét ? Khi dạy bài toán này, giáo viên cần hướng dẫn học sinh tóm tắt bài toán ngắn gọn, dễ hiểu. Tránh để học sinh ghi dài dòng, không cần thiết. Tóm tắt: 2 giờ : 90 km 4giờ : chúng tôi ? Khi hướng dẫn học sinh giải cần nhấn mạnh cho học sinh mỗi bước quan trọng trong mỗi cách, đó là: Bước 1 trong cách 1 là bước “rút về đơn vị” Trong 1 giờ ô-tô đi được là : 90 : 2 = 45 (km). Bước 1 trong cách 2 là bước ” tìm tỉ số” 4 giờ gấp 2 giờ số lần là : 4 : 2 = 2 (lần). Khi nắm chắc được mỗi bược cơ bản trong mỗi cách giải bài toán, học sinh sẽ dễ dàng tìm ra kết quả của bài toán.
    4. 6. 5.2. Trường hợp đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia giảm hoặc tăng bấy nhiêu lần và ngược lại: a. Nội dung: Trong chương trình Toán 5, Dạng toán này là dạng toán mới. Dạng toán này gồm 10 bài toán được trình bày thành 2 bài dạy (tiết 18,19) và rải đều cho các tiết học sau đó và trong chương trình ôn tập cuối năm. Tiết 18 là tiết học giúp học sinh nhận dạng bài toán và trang bị cho học sinh 2 cách giải của dạng toán này. Tiết 19 là tiết luyện tập nhằm giúp học sinh rèn luyện kĩ năng thực hành. Các bài tập rải đều cho các bài học sau đó nhằm giúp các em rèn luyện kĩ năng, kĩ xảo cũng như mở rộng và nâng cao kiến thức. b. Phương pháp giảng dạy: Dạng toán này cũng thường gặp và mang tính thực tế cao như dạng toán 5.1. Vì vậy, khi dạy dạng toán này, giáo viên cũng cần thực hiện các bước như khi dạy dạng toán 5.1. Tuy nhiên vấn đề cần đặc biệt chú ý ở đây là sự xác định mối quan hệ giữa hai đại lượng. Vì vậy khi dạy loại toán này, giáo viên cần làm rõ mối quan hệ giữa hai đại lượng đã cho trong một bài toán. Đồng thời cần nêu thêm ví dụ gần gũi với học sinh để học sinh nắm bắt nhằm tránh nhầm lẫn với mối quan hệ giữa hai đại lượng trong các bài toán thuộc loại toán 5.1. Ví dụ : Muốn đắp xong nền nhà trong 2 ngày, cần có 12 người. Hỏi muốn đắp xong nền nhà đó trong 4 ngày thì cần bao nhiêu người? (Mức làm của mỗi người như nhau). Khi dạy bài toán này, giáo viên cần làm rõ mối quan hệ giữa số ngày và số người. Số người ở đây là số người làm trong mỗi ngày. Vì vậy cần phân tích cho học sinh thấy rõ muốn đắp xong nền nhà trong thời gian dài hơn thì cần giảm số người làm trong mỗi ngày. Đồng thời, giáo viên cần nêu thêm vài ví dụ khác để học sinh dễ nắm bắt. Chẳng hạn: Muốn quét xong lớp học trong 6 phút thì cần 2 bạn. Hỏi muốn quét xong lớp học trong 3 phút thì cần mấy bạn? (Mức làm của mỗi bạn là như nhau). Hoặc : Muốn hái xong một rẫy cà phê trong 10 ngày thì cần 6 người. Hỏi muốn hái xong rẫy cà phê trong 5 ngày thì cần bao nhiêu người? (Mức làm mỗi người như nhau). Thông qua việc phân tích hai ví dụ gần gũi với các em hằng ngày, các em sẽ nắm vững mối quan hệ giữa hai đại lượng của bài toán dạng này (Khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia giảm (hoặc tăng) bấy nhiêu lần).
    5. 7. Khi học sinh đã nắm chắc mối quan hệ giữa hai đại lượng thì các em sẽ dễ dàng vận dụng phương pháp phù hợp để giải bài toán. 6. Bài toán về tỉ số phần trăm: 6.1. Dạng toán tìm tỉ số phần trăm của hai số: a. Nội dung: Dạng toán này được xem là cơ bản nhất trong các dạng toán về tỉ số phần trăm ở toán lớp 5. Trong chương trình toán 5, dạng toán này gồm hơn 10 bài toán được trình bày trong 2 tiết học (tiết 75,76) và một số bài tập nằm rải rác trong các tiết học sau đó. Dạng toán này là một trong những dạng toán tương đối khó trong chương trình toán 5 nhưng nó lại là dạng toán có nhiều ứng dụng trong thực tế. b. Phương pháp giảng dạy: Để giúp các em học tốt các bài toán về tỉ số phần trăm, học sinh cần phải hiểu và làm thành thạo dạng toán này. Tuy nhiên, muốn học tốt dạng toán này thì học sinh cần phải hiểu thấu đáo về vấn đề tỉ số. Do đó vấn đề tỉ số là nền tảng cho quá trình dạy học toán về tỉ số phần trăm. Để làm được điều đó, thì khi dạy bài “Tỉ số phần trăm”, trước khi hướng dẫn học sinh tìm hiểu hai ví dụ ở sách giáo khoa, giáo viên nêu ví dụ để cho học sinh hiểu thấu đáo vấn đề tỉ số. Chẳng hạn: Lớp em có 14 bạn nam, 16 bạn nữ. Tìm tỉ số của bạn nam và bạn nữ, tỉ số của bạn nữ và bạn nam, tỉ số của bạn nữ và cả lớp, tỉ số của bạn nam và cả lớp. Thông qua ví dụ trên, hướng dẫn cho học sinh hiểu và xác định được 4 tỉ số: Tỉ số của bạn nam và bạn nữ là: 14 : 16 = 16 14 = 8 7 . Tỉ số của bạn nữ và bạn nam là: 16 : 14 = 14 16 = 7 8 . Tỉ số của bạn nữ và cả lớp là: 16 : (16 + 14 ) = 30 16 = 15 8 . Tỉ số của bạn nam và cả lớp là: 14 : (16 + 14 ) = 30 14 = 15 7 . Khi học sinh đã hiểu rõ cách lập tỉ số của hai số, giáo viên dễ dạng hình thành cho học sinh cách tìm tỉ số phần trăm của hai số bằng cách viết thương dưới dạng số thập phân. Sau đó nhân nhẩm thương đó với 100 và viết thêm kí hiệu phần trăm (%) vào bên phải kết quả tìm được. Ví dụ : Tỉ số của bạn nam và bạn nữ là: 14 : 16 = 16 14 = 8 7 = 0,875 = 87,5%
    6. 9. của hai số thì số học sinh nữ chiếm 52,2% số học sinh toàn trường. Vậy số học sinh toàn trường là bao nhiêu %? (100%). Khi đó, giáo viên có thể gợi ý cách tóm tắt bài toán tương tự bài toán có quan hệ tỉ lệ và hướng dẫn cách trình bày để học sinh thực hiện giải bài toán. Chẳng hạn: Tóm tắt: 52,5% : 800 em 100% : chúng tôi ? Bài giải: Số học sinh nữ của trường đó là : 800 × 52,5 : 100 = 420 (em). Đáp số : 420 em. 6.3. Dạng toán ” Tìm một số khi biết một số phần trăm của nó”. a.Nội dung: Dạng toán này được hình thành trên cơ sở của bài toán dạng 6.1. Trong chương trình toán 5, dạng toán này gồm 10 bài tập được phân bố trong 2 tiết học (79,80) và một số bài tập trong các tiết học sau đó nhằm giúp các em rèn luyện kĩ năng thực hành. Đây cũng là một trong những dạng toán khó trong chương trình toán 5. Đây cũng là dạng toán mang tính thực tế cao. Nếu không khắc sâu cho học sinh thì các em rất dễ lẫn lộn với dạng toán 6.1 và 6.2. b. Phương pháp giảng dạy: Khi giải bài toán thuộc dạng này, học sinh cũng gặp phải khó khăn trong việc xác định tỉ lệ phần trăm của số cần tìm. Do đó việc hướng dẫn học sinh giải tốt bài toán ở dạng 6.2 cũng đạt được mục đích tiền đề cho bài toán thuộc dạng này. Và chìa khoá của vấn đề đó cũng chính là việc nắm vững tỉ số của hai số. Vì vậy khi học sinh đã giải bài toán ở mục 6.2 thì việc hướng dẫn học sinh giải bài toán về “Tìm một số khi biết một số phần trăm của nó” là hết sức đơn giản (các bược cũng tương tự như các bước hướng dẫn bài toán mục 6.2) Ví dụ: Học sinh khá giỏi của Trường Vạn Thịnh là 552 em, chiếm 92% số học sinh toàn trường. Hỏi Trường Vạn Thịnh có bao nhiêu học sinh ? Khi giải bài toán này, học sinh sẽ gặp khó khăn vì không biết được tỉ lệ phần trăm của học sinh toàn trường. Do đó giáo viên cần gợi mở: Căn cứ vào việc lập tỉ số của hai số thì số học sinh khá giỏi chiếm 92% số học sinh toàn trường. Vậy số học sinh toàn trường là bao nhiêu %? (100%).
    7. 10. Khi đó, giáo viên có thể gợi ý cách tóm tắt bài toán tương tự bài toán có quan hệ tỉ lệ và hướng dẫn cách trình bày để học sinh thực hiện giải bài toán. Chẳng hạn: Tóm tắt: 92% : 552 em 100% : chúng tôi ? Bài giải: Trường Vạn Thịnh có số học sinh là : 552 × 100 : 92 = 600 (em). Đáp số : 600 em 7. Bài toán về chuyển động đều: 7.1. Bài toán về tính vận tốc: a. Nội dung: Đây là dạng toán cơ bản của toán chuyển động đều. Trong chương trình toán 5, dạng toán này gồm 15 bài toán được trình bày ở tiết 130 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy: Khi dạy bài toán tìm vận tốc, vấn đề trong tâm là cần hình thành cho các em quy tắc và công thức tính vận tốc. Vì vậy việc phân tích bài toán 1 ở tiết 130 là hết sức quan trọng để làm cơ sở cho việc hình thành công thức tính vận tốc. Đối với dạng toán này, học sinh gặp khó khăn trong việc hiểu khái niệm về vận tốc và đơn vị vận tốc. Vì vậy, khi dạy giáo viên cần làm rõ cho học sinh hiểu “Vận tốc là quãng đường đi được trong một đơn vị thời gian”. Khi dạy về đơn vị vận tốc cần làm rõ : Nếu đơn vị của quãng đường là ki-lô-mét, đơn vị thời gian là giờ thì đơn vị vận tốc là km/giờ. Nếu đơn vị của quãng đường là mét, đơn vị thời gian là phút thì đơn vị vận tốc là m/phút. Nếu đơn vị của quãng đường là mét, đơn vị thời gian là giây thì đơn vị vận tốc là m/giây. Khi học sinh nắm chắc khái niệm về vận tốc và đơn vị vận tốc thì các em sẽ dễ dàng thực hiện các bước giải bài toán.
    8. 11. Ví dụ : Một người chạy được 60 m trong 10 giây. Tính vận tốc chạy của người đó. Khi hướng dẫn, giáo viên cần cho học sinh hiểu rõ: vận tốc chạy của người đó chính là số mét chạy được trong 1 giây và đơn vị vận tốc ở đây là m/giây. Khi hiểu rõ vấn đề này, học sinh sẽ dễ dàng giải được bài toán. Bài giải: Vận tốc chạy của người đó là: 60 : 10 = 6 (m/giây). Đáp số : 6 m/giây. Sau khi học sinh đã hiểu và giải được bài toán này thì điều cơ bản và hết sức quan trọng đó là gợi ý để học sinh nêu quy tắc và công thức tính vận tốc: Muốn tính vận tốc ta lấy quãng đường chia cho thời gian. 7.2. Bài toán về tính quãng đường: a. Nội dung: Đây là một trong những dạng toán cơ bản của toán chuyển động đều trong chương trình toán lớp 5. Trong chương trình toán 5, dạng toán này gồm 16 bài toán được trình bày ở tiết 132 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy: Khi dạy bài toán tính quãng đường vấn đề trọng tâm là cần hình thành cho các em quy tắc và công thức tính quãng đường. Vì vậy việc phân tích bài toán 1 ở tiết 132 là hết sức quan trọngđể làm cơ sở cho việc nhận xét và rút ra quy tắc, hình thành công thức tính quãng đường. Khi giải bài toán dạng này, ngoài việc hình thành quy tắc và công thức tính quãng đường, giáo viên cần lưu ý về đơn vị thời gian và đơn vị vận tốc đã cho trong bài. Ví dụ nếu đơn vị thời gian là giờ và đơn vị vận tốc là km/giờ thì học sinh tính quãng đường bằng cách lấy vận tốc nhân với thời gian. Tuy nhiên nếu đơn vị thời gian là phút và đơn vị vận tốc là km/giờ thì hướng dẫn học sinh đổi đơn vị thời gian từ phút sang giờ hoặc đổi đơn vị đo vận tốc từ km/giờ sang km/phút hoặc (m/phút) v = s : t
    9. 12. rồi mới áp dụng công thức để tính. Do đó cần khái quát cho học sinh là: để tính quãng đường cần chú ý: đơn vị thời gian và thời gian trong đơn vị vận tốc phải trùng nhau. Ví dụ: Một người đi xe đạp trong 15 phút với vận tốc 12,6 km/giờ. Tính quãng đường đi được của người đó. Khi dạy cần lưu ý ở đây đơn vị của vận tốc là km/giờ mà đơn vị thời gian là phút. Vì vậy cần hướng dẫn học sinh đổi đơn vị thời gian từ phút sang giờ rồi mới áp dụng công thức tính quãng đường. Bài giải: 15phút = 0,25giờ Quãng đường đi được của người đó là: 12,6 × 0,25 = 3,15(km). Đáp số : 3,15 km. Hoặc Bài giải: 12,6 km/giờ = 0,21 km/phút Quãng đường đi được của người đó là : 0,21 × 15 = 3,15 (km). Đáp số : 3,15 km. Hoặc Bài giải: 12,6 km/giờ = 210 m/phút Quãng đường đi được của người đó là : 210 × 15 = 3150 (m). Đáp số : 3150 m. 7.3. Bài toán về tính thời gian: a. Nội dung: Đây là một trong 3 dạng toán cơ bản của toán chuyển động đều trong chương trình toán lớp 5. Dạng toán này được hình thành trên cơ sở học sinh đã nắm chắc hai dạng toán cơ bản về chuyển động đều đó là tính vận tốc, tính quãng đường. Trong chương trình toán 5, dạng toán này gồm 16 bài toán được trình bày ở tiết 134 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy:
    10. 13. Khi dạy bài toán tính quãng đường vấn đề trọng tâm là cần hình thành cho các em quy tắc và công thức tính quãng đường. Vì vậy việc phân tích bài toán 1 ở tiết 134 là hết sức quan trọng để làm cơ sở cho việc hình thành quy tắc, công thức tính thời gian. Cũng tương tự như bài toán về tính quãng đường thì ngoài việc hình thành quy tắc và công thức tính thời gian cho học sinh, giáo viên cần lưu ý về vấn đề đơn vị đo. Nếu đơn vị đo quãng đường là ki-lô-mét, đơn vị đo vận tốc là km/giờ thì đơn vị đo thời gian là giờ. Nếu đơn vị đo quãng đường là ki-kô-mét mà đơn vị đo vận tốc là m/giờ thì giáo viên cần hướng dẫn học sinh chuyển đổi đơn vị đo sao cho đơn vị đo độ dài trong đơn vị đo vận tốc trùng với đơn vị đo quãng đường. Ví dụ : Một con ốc sên bò với vận tốc 12 cm/phút. Hỏi con ốc sên đó bò được quãng đường 1,08m trong thời gian bao lâu? Khi dạy dạng toán này, giáo viên cần cho học sinh nhận xét đơn vị đo quãng đường và đơn vị đo vận tốc để từ đó chuyển đổi sao cho phù hợp trước khi vận dụng quy tắc tính thời gian. Cụ thể là: Ở đây đơn vị đo vận tốc là cm/phút, đơn vị đo quãng đường là mét. Vậy ta chưa thể áp dụng quy tắc tính thời gian trực tiếp mà cần phải chuyển đổi đơn vị đo sao cho phù hợp. Chẳng hạn: Bài giải: 12 cm/phút = 0,12 m/phút Thời gian ốc sên bò hết quãng đường 1,08 m là: 1,08 : 0,12 = 9(phút). Đáp số : 9 phút. Hoặc Bài giải: 1,08 m = 108 cm Thời gian ốc sên bò hết quãng đường 1,08 m là: 108 : 12 = 9(phút). Đáp số : 9 phút. 8. Bài toán có nội dung hình học (chu vi, diện tích, thể tích): a. Nội dung: Trong chương trình toán 5, bài toán có nội dung hình học là dạng toán chiếm dung lượng nhiều nhất gồm hơn 150 bài toán, được phân bố đan xen gần khắp chương trình Toán 5. Bài toán có nội dung hình học ở lớp 5 tiếp tục củng cố, mở rộng
    11. 14. việc áp dụng quy tắc, công thức tính chu vi, diện tích một số hình đã được học ở lớp 4 như hình bình hành, hình chữ nhật, hình vuông, hình thoi. Đồng thời tìm hiểu một số quy tắc, công thức tính chu vi diện tích một số hình như hình thang, hình tam giác, hình tròn. Tìm hiểu và áp dụng một số quy tắc, công thức tính diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần của hình lập phương, thể tích hình lập phương, thể tích hình hộp chữ nhật. b. Phương pháp giảng dạy: Đối với các bài toán có nội dung hình học thì việc hình thành biểu tượng về chu vi, diện tích, thể tích là hết sức quan trọng. Trên cơ sở học sinh có khái niệm về biểu tượng sẽ giúp các em dễ dàng hơn trong việc hình thành công thức tính chu vi, diện tích, thể tích của các hình. Chẳng hạn: Muốn hình thành công thức tính thể tích hình hộp chữ nhật, cần giúp học sinh có biểu tượng về thể tích (là toàn bộ phần chiếm chỗ bên trong của một vật). Trên cơ sở có được biểu tượng về thể tích, giáo viên đưa ra mô hình về thể tích để yêu cầu học sinh tính số hình lập phương có bên trong hình hộp chữ nhật theo gợi ý của giáo viên: + Hình hộp chữ nhật này có mấy lớp được xếp chồng lên nhau? (3 lớp). + Mỗi lớp có mấy hàng? (2 hàng). + Mỗi hàng có mấy hình lập phương? (5 hình lập phương). Từ đó, cho học sinh đối chiếu với các kích thước tương ứng của hình hộp chữ nhật để hình thành công thức tính thể tích hình hộp chữ nhật V = a × b × c

    --- Bài cũ hơn ---

  • Các Dạng Toán Hsg Lớp 5 Có Đáp Án
  • Đề Thi Học Kì 1 Môn Toán Lớp 9 (Có Đáp Án)
  • Đề Thi Toán Lớp 5 Giữa Kì 1 Có Đáp Án (Đề 1)
  • Top 80 Đề Thi Toán Lớp 5 Học Kì 1, Học Kì 2 Chọn Lọc, Có Đáp Án
  • Bài Tập Toán Có Lời Văn Lớp 5
  • Các Bước Giúp Học Sinh Lớp 1 Học Tốt Dạng Toán “giải Toán Có Lời Văn”

    --- Bài mới hơn ---

  • Giáo Án Toán Lớp 1: Giải Toán Có Lời Văn
  • Hướng Dẫn Học Sinh Giải Toán Có Lời Văn
  • Bài Tập Phần Tìm Hai Số Khi Biết Tổng Và Hiệu Hai Số Đó
  • Hướng Dẫn Và Bài Tập Toán Lớp 4 Tìm Hai Số Khi Biết Tổng Và Hiệu
  • Trọn Bộ Bài Tập Toán Cơ Bản Lớp 4
  • Như chúng ta đã biết môn toán ở bậc tiểu học trang bị cho hs những tri thức, kĩ năng toán học cơ bản, cần thiết cho việc học tập và bước vào cs lao động sau này .

    Môn toán có vị trí đặc biệt quan trọng, nó thiết thực góp phần thực hiện mục tiêu giáo dục tiểu học theo đặc trưng và khả năng.Học toán, hs được nắm vững những kiến thức toán và luyện tập thành thạo các thao tác , kĩ năng tính toán , các em sẽ áp dụng trong cs hàng ngày.

    Đối với hs lớp 1 môn học có vị trí là nền tảng, là cái gốc, là điểm xuất phát của một bộ môn khoa học. Môn toán mở đường cho các em đi vào thế giới kì diệu của toán học. Bắt đầu học đếm, nhận biết các số 1,2,3….các phép cộng, trừ…càng ngày các em sẽ được mở rộng hơn lên những kiến thức cao hơn…Những phép tính, con số đơn giản ấy vẫn theo các em cho đến suốt cuộc đời.

    Trong mạch kiến thức toán lớp 1 thì việc giúp các em làm quen, học tốt với dạng ” giải toán có lời văn” là một việc làm đòi hỏi thời gian. Bởi với các em lớp 1 ngôn ngữ và khả năng tư duy còn hạn chế, kỉ năng tính toán, trình bày còn thiếu tính chính xác, vốn hiểu biết và khả năng đọc hiểu của các em chưa nhiều, vì vậy : Làm thế nào để giúp các em học tốt dạng ” Giải toán có lời văn ” luôn là điều mà các Gv lớp 1 trăn trở .

    Là gv dạy lớp 1 đã mấy năm nay, bản thân tôi nhận thấy : Khả năng giải toán phản ánh năng lực vận dụng kiến thức toán của hs. Giải toán có lời văn là cách giải quyết vấn đề của môn toán. Từ đề toán là ngôn ngữ thông thường đưa ra các phép tính, kèm lời giải và cuối cùng là đáp số .Từ đó ta thấy rằng: giải toán có lời văn góp phần rèn luyện khả năng diễn đạt, tích cực phát triển tư duy cho hs . Vì vậy để hướng dẫn hs học tốt dạng ” Giải toán co lời văn ” Gv cần dạy hs làm tốt 5 bước sau :

    a. Đọc kĩ đề bài : Đề bài cho biết gì ? đề bài yêu cầu tìm gì ?

    Muốn hs hiểu và giải được bài toán điều quan trọng đầu tiên là giúp các em đọc và hiểu được nội dung bài toán và để hs hiểu đề bài gv cần đọc và nhấn mạnh các từ ngữ trong bài …

    b. Tóm tắt bài toán : Trong giai đoạn đầu gv cần hướng dẫn hs tóm tắt bai toán bằng cách đàm thoại và đưa vào câu trả lời của hs , gv viết tóm tắt lên bảng rồi dựa vào tóm tắt giúp hs đọc lại bài toán. Đối với những bài toán bằng hình ảnh hay các em gặp khó khăn trong khi đọc, gv nên cho các em nhìn tranh để trả lời câu hỏi hoặc gv có thể dùng mẫu vật gắn lên bảng thay tranh( hoặc tóm tăt bằng sơ đồ đoạn thẳng) để hỗ trợ hs đọc đề bài vì tư duy của các em hs lớp 1 là tư duy cụ thể ….

    c. Tìm ra cách giải bài toán : Sau khi giúp các em nhận biết tìm hiểu kĩ đề toán gv hướng dẫn các em tìm ra cách giải bài toán, xác định phép tính, đáp số từ đó hướng dẫn hs nêu lời giải. GV nên hướng dẫn giúp các em hs nêu nhiều lời giải khác nhau sau đó chọn lời giải phù hợp nhất. ( Không yêu cầu các em viết theo 1 lời giải nhất định).

    d. Trình bày bài giải : Đây là một khâu quan trọng, vì vậy gv cần rèn cho hs kĩ năng trình bày bài giải chính xác, khoa học. Để làm được điều đó trước khi hs làm bài gv cần nêu môt số câu hỏi định hướng như :

    + Cách trình bày bài giải như thế nào ?

    + Trước hết các em phải viết gì và viết như thế nào ? vv…

    đ. Kiểm tra lời giải và đáp số : Đây là khâu cuối cùng trong trình bày bài toán. Và đây là giai đoạn giúp rèn cho các em tính cẩn thận ,vì vậy gv cần tạo cho hs có thói quen này .đối với dạng toán này gv cần giúp các em phát triển tư duy, trí tuệ, phất huy tính tích cực chủ động và sáng tạo trong học tập, gv có thể cho các em làm quen với việc tự đặt đề toán, giải toán hay từ tóm tắt, từ sơ đồ phân tích bài toán và giải, có thể viết tiếp nội dung đề toán vào chỗ chấm (…) , tự đặt câu hỏi cho bài toán rồi giải,( ở bước này gv không nên rập khuôn, máy móc) vì ở mỗi bài toán có nhiều cách đặt lời giải khác nhau ,làm sao cho phù hợp với trình độ nhận thức của hs ở lớp mình phụ trách và tùy vào từng loại bài gv củng cố, khắc sâu cho các em những kiến thức đã học một cách có hệ thống để từ đó giúp các em nắm vững kiến thức và áp dụng vào thực hành một cách thành thạo .

    TÓM LẠI : để dạy tốt môn toán nói chung và giúp các em nắm vững kiến thức “Giải toán có lời văn”cho hs lớp 1 nói riêng, người gv phải biết nắm bắt và hệ thống hóa nội dung, chương trình, sgk để xác định đúng đặc trưng cho mỗi tiết học.

    Con đường nhận thức của hs tiểu học là từ trực quan sinh động đến tư duy trừu tượng, từ tư duy trừu tượng đến thực tiễn.Vì vậy,đồ dùng, thiết bị dạy học là phương tiện hữu ích cực kì cần thiết khi dạy ” Giải toán có lời văn “.gv cần coi trọng việc sử dụng đồ trực quan trong giảng dạy ( sử dụng nhưng không lạm dụng).

    – Dạy : Giải toán có lời văn đòi hỏi phải có thời gian,sự tỉ mỉ, kiên nhẫn,nhẹ nhàng nhưng cần cương quyết để giúp các em làm quen và tiếp cận dần từ đó hình thành kĩ năng thực hành tốt .

    – Không có phương pháp dạy học nào là tối ưu mà chỉ có lòng nhiệt tình, đam mê tận tụy với nghề của gv. Đó mới là cách tốt nhát giúp cho việc dạy học có hiệu quả. Bởi một người gv yêu nghề mến trẻ sẽ biết làm thế nào và dạy học bằng hình thức, phương pháp nào phù hợp với các em. Biết phát huy năng lực, sở trường và tính tích cực chủ dộng trong học tập của các em.Ngoài ra, người gv cần biết tạo không khí lớp học sôi nổi, gây hứng thú cho các em để mỗi tiết học trên lớp luôn nhẹ nhàng và đạt hiệu quả cao.

    Và để làm được điểu đó người gv phải không ngừng học tập nâng cao trình độ chuyên môn, thường xuyên học hỏi trao đổi kinh nghiệm với đồng nghiệp, biết gắn kiến thức với thực tiễn cuộc sống có như vậy kiến thức các em tiếp thu và lĩnh hội được sẽ đọng lại mãi trong trí nhớ của các em, nhờ đó góp phần nâng cao hiệu quả giảng dạy .

    Sơn Tây, ngày 25 tháng 4 năm 2022 Phan Thị Hương Giáo viên Trường Tiểu học Sơn Tây

    Nguyễn Thị Thúy Vân @ 23:33 25/04/2017

    Số lượt xem: 2780

    --- Bài cũ hơn ---

  • Gia Sư Toán Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Đề Tài: Một Số Biện Pháp Giúp Học Sinh Lớp 4 Giải Toán Có Lời Văn
  • Bài Giải Của Lớp 4
  • Một Số Giải Pháp Giải Bài Toán Có Lời Văn Cho Học Sinh Lớp 5 2022
  • Giải Phiếu Bài Tập Cuối Tuần Toán Lớp 5 Tuần 22
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100