Tổng Hợp Các Đề Toán Cao Cấp 2 Có Lời Giải

--- Bài mới hơn ---

  • Đề Thi Hk2 Toán 12
  • Đề Thi Học Sinh Giỏi Toán 12 Có Đáp Án
  • Bài Tập Về Sổ Kế Toán Và Hình Thức Sổ Kế Toán
  • Bài Giải Đề Thi Toán Thpt Quốc Gia 2022
  • Một Số Bài Toán Hình Học Lớp 7 Cực Hay Có Đáp Án
  • TỔNG HỢP ĐỀ TOÁN CAO CẤP 2

    Đề 3 :

    Câu 1: tính gần đúng:

    Câu 2 : Tính tích phân sau:

    Câu 3 .Xét tính phân kì và hội tụ của Câu 4: Giải phương trình vi phân:

    Câu 5: Giải phương

    trình sai phân:

    Đề 4 :

    Câu 1. Tìm cực trị của hàm số:

    Câu 2. tính

    Câu 3 tính tích phân

    Câu 4 : Giải phương

    trình vi phân

    Câu 5: Giải phương trình

    sai phân

    Đề 5:

    Câu 1: Tìm cực trị của hàm

    số: Câu 2: Tính nguyên

    hàm:

    Câu 3: xét tính phân kỳ hội tụ Câu 4:tính vi phân

    Câu 5 : Giải pt sai phân :

    Câu 5: gpt sai phân

    Đề 7

    Câu 1 : Tìm cực trị :

    Câu 2 : Tính tích phân của

    Câu 3 : Xét tính hội tụ phân kì

    của tích phân từ 0 đến 2 của

    Câu 4 : PTVP

    Câu 5 : PTSP Đề 9 :

    Câu 1: tính gần đúng

    Câu 2: tính tích phân

    Câu 3: tích phân Câu 4: vi phân

    Câu 5: sai phân

    Đề 11:

    Câu 1. Tìm cực trị: Câu 2. Tính tích phân:

    Câu 5.Giải ptrình sai phân:

    Đề 14

    Câu 1 : tính gần đúng :

    Câu 2 : tính tích phân :Câu 3 Xác định sự hội tụ phân kì : Câu 4: Tính vi phân

    Câu 5 : Tính sai phân :

    Đề 16 :

    Câu 1 . tính giá trị gần đúng câu 2 tính tích phân

    Câu 3 xét tính hội tụ hay

    phân kì Câu 4 giải

    phương trình vi phân

    Câu 5 giải phương trình

    sai phân

    Đề 18

    Câu 1 : Tính gần đúng Câu 2 : tính tích phân Câu 3 : xét tính hội tụ, phân kỳ Câu 4 : Giải pt vi phân

    Câu 3: xét hội tụ phân kì của

    Câu 4: vi phân

    Câu 5: sai phân

    Đề 22 :

    Câu 1: Tìm cực trị

    Câu 2 : tìm nguyên hàm

    Câu 3 : xét hội tụ phân kỳ

    Câu 4: ptvp

    Câu 5 : pt sai phân

    Đề 23 :

    1 Tìm cực trị :

    2.Tính tích phân

    3.Xét tính hội tụ, phân kỳ 4.Giải phương trình

    5.Giải phương trình

    Câu3.Tích phân

    Câu 4: Giải phương trình vi

    phân

    Câu5: Giải ptrình sai phân:

    Đề 30

    Câu 1: Tính gần đúng

    Câu 2:Tính tích phân

    Câu 3:Xét tính hội tụ phân kì

    của tích phân

    Câu 4:Giải phương trình vi phân: Câu 5:Giải phương trình sai phân:

    Đề 31

    Câu 1 : Tính gần đúng

    Câu 2 : Tính tích phân

    với ;

    Câu 3 : xét tính hội tụ và phân kỳ

    Câu 4 : giải pt vi phân

    Đề 32

    Câu 1 .Tìm miền xđ và

    biểu diễn qua đồ thị Câu 2 .

    Tích phân

    Câu 3 . Xét tính hội tụ hay phân kỳ của tích phân

    Câu 4 . Giải pt vi phân

    Câu 5 . Giải pt sai phân

    Đề khoa A

    Câu 1. tính

    Câu 2. Tích phân

    Câu 3 : Tích phân Câu 4. Tính Vi phân Câu 5 : Giải pt Sai phân

    Đề khoa H

    Bài 1: Tìm cực trị:

    Bài 2 tích phân

    Bài 3 tính hội tụ Bài 4 . gpt vp

    Bài 5 tính sai phân.

    3. xét ht,pk: 4. gpt:

    --- Bài cũ hơn ---

  • Đề Thi Toán Cao Cấp Ueh Có Đáp Án Chi Tiết
  • Tranh Cãi Gay Gắt Bài Toán Lớp 3 Tính Số Lãi Của Bác Nông Dân, Tưởng Đơn Giản Mà Đầy Người Lớn Cũng Sai Be Bét
  • Giải Thích Bài Toán Mua Bò
  • Giải Bài Toán Bằng Logo
  • Top 40 Đề Thi Toán Lớp 1 Có Đáp Án
  • Đề Thi Học Kì 1 Của Các Trường Có Lời Giải

    --- Bài mới hơn ---

  • Đáp Án Vở Bài Tập Ngữ Văn 6 Tập 2
  • Đáp Án Tham Khảo Môn Ngữ Văn Thi Thpt Quốc Gia 2022
  • Kỳ Thi Thpt Quốc Gia 2022: Đề Thi Và Đáp Án Môn Ngữ Văn
  • Đáp Án Môn Ngữ Văn Thpt Quốc Gia 2022 Đề Dự Bị
  • Đáp Án Môn Ngữ Văn Thpt Quốc Gia 2022 Chính Thức Từ Bộ Gd&đt
  • Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Nam Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn Văn lớp 9 năm 2022 – 2022 sở GD & ĐT Vĩnh Phúc với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn Văn lớp 9 năm 2022 – 2022 quận Bắc Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hai Bà Trưng với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Bình Chánh với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hoàng Mai với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Củ Chi với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Đông Anh với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Nam Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Thanh Xuân với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Long Biên với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hoàn Kiếm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Cầu Giấy với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận 10 với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Thanh Trì với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hà Đông với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 tỉnh Bạc Liêu với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Bình Tân với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Tân Châu với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận 7 với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Tân Bình với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Đà Lạt với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Quốc Oai với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Thủ Dầu Một với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Duy Tiên với cách giải nhanh và chú ý quan trọng

    --- Bài cũ hơn ---

  • Câu Hỏi Trắc Nghiệm Học Kì 1 Môn Ngữ Văn Lớp 7 (Có Đáp Án)
  • Đáp Án Vở Bài Tập Ngữ Văn Lớp6 Bài Sông Nước Cà Mau
  • Giải Bài Tập Ngữ Văn Lớp 6 Bài 14: Con Hổ Có Nghĩa
  • Soạn Bài Từ Và Cấu Tạo Của Từ Tiếng Việt
  • Đề Thi Thpt Quốc Gia 2022 Môn Toán Có Đáp Án
  • Bài Tập Toán Cao Cấp 2 Có Lời Giải Mp3 Ogg For Free

    --- Bài mới hơn ---

  • Giáo Trình Toán Cao Cấp A3 (Giải Tích Hàm Nhiều Biến)
  • Một Vài Kinh Nghiệm Giúp Học Sinh Lớp 1 Giải Bài Toán Có Lời Văn Skkn Day Giai Toan Co Loi Van Cho Hs Lop 1 20122013 Doc
  • Bài 1, 2, 3, 4 Trang 84 Sgk Toán 4
  • Giải Bài Tập Trang 84 Sgk Toán 4: Chia Cho Số Có Hai Chữ Số
  • Giải Toán Lớp 4 Ôn Tập Về Hình Học
  • Related: Mp3 bài tập toán cao cấp 2 có lời giải full mp3 free , 128kb 320kb high quality Mp3 bài tập toán cao cấp 2 có lời giải, Mp3 bài tập toán cao cấp 2 có lời giải karaoke nhac chuong nhac cho mien phi, tai nhac chuong Mp3 bài tập toán cao cấp 2 có lời giải, tron bo free download Mp3 bài tập toán cao cấp 2 có lời giải xem phim online, free album Mp3 bài tập toán cao cấp 2 có lời giải, tuyen chon Mp3 bài tập toán cao cấp 2 có lời giải, greats hit Mp3 bài tập toán cao cấp 2 có lời giải, hay nhat Mp3 bài tập toán cao cấp 2 có lời giải, bai hat Mp3 bài tập toán cao cấp 2 có lời giải moi nhat, hat karaoke Mp3 bài tập toán cao cấp 2 có lời giải, beat Mp3 bài tập toán cao cấp 2 có lời giải instrumental music, nhac beat Mp3 bài tập toán cao cấp 2 có lời giải slideshow music karaoke, lastest Mp3 bài tập toán cao cấp 2 có lời giải, update Mp3 bài tập toán cao cấp 2 có lời giải, sexy Mp3 bài tập toán cao cấp 2 có lời giải, camera Mp3 bài tập toán cao cấp 2 có lời giải webcam, lastest Mp3 bài tập toán cao cấp 2 có lời giải, moi nhat Mp3 bài tập toán cao cấp 2 có lời giải trailer, Mp3 bài tập toán cao cấp 2 có lời giải vietsub, Mp3 bài tập toán cao cấp 2 có lời giải lyric, Mp3 bài tập toán cao cấp 2 có lời giải official, 720 Mp3 bài tập toán cao cấp 2 có lời giải youtube vimeo veoh youku clipvn zing, Mp3 bài tập toán cao cấp 2 có lời giải rapidshare mediafire hotfile, Mp3 bài tập toán cao cấp 2 có lời giải torrent download, Mp3 bài tập toán cao cấp 2 có lời giải full free download, Mp3 bài tập toán cao cấp 2 có lời giải rar Zip password mediafire Mp3 bài tập toán cao cấp 2 có lời giải Crack serial keygen cd key

    --- Bài cũ hơn ---

  • 5 Bước Giải Bài Toán Có Lời Văn Lớp 1
  • Hướng Dẫn Giải Toán Có Lời Văn Lớp 1
  • Dạy Học Sinh Dạng Toán Có Lời Văn Ở Lớp 1
  • Giải Toán Lớp 10 Bài 1: Mệnh Đề
  • Phương Trình Lượng Giác (Đầy Đủ)
  • Toán Cao Cấp Cho Các Nhà Kinh Tế

    --- Bài mới hơn ---

  • Hội Thảo: “ứng Dụng Phương Trình Sai Phân Trong Giảng Dạy Môn Giải Tích Khối Nghành Kinh Tế Theo Chương Trình Cdio”
  • Một Số Khái Niệm Về Giải Tích Không Trơn
  • Giải Thích Kí Hiệu Van Phân Phối 4/3 5/2
  • Giải Thích Ký Hiệu, Các Ký Tự Viết Tắt Trên Bản Đồ Địa Chính
  • Giải Thích Ký Hiệu Que Hàn Theo Tiêu Chuẩn Aws
  • TOÁN CAO CẤP CHO CÁC NHÀ KINH TẾ – PHẦN II: GIẢI TÍCH TOÁN HỌC

    Cuốn sách này là cuốn sách thứ hai của bộ sách hai tập Toán cao cấp cho các nhà kinh tế được biên soạn dựa theo chương trình môn Toán cao cấp của trường Đại học Kinh Tế Quốc dân, dùng chung cho cả hai khối: Kinh tế học và Quản trị kinh doanh.

    Tiếp theo cuốn Toán cao cấp cho các nhà kinh tế, Phần 1: Đại số tuyến tính đã được xuất bản, cuốn Toán cao cấp cho các nhà kinh tế, Phần 2: Giải tích toán học bao gồm những nội dung sau đây:

    Chương 1: Hàm số và giới hạn

    Chương 2: Đạo hàm và vi phân

    Chương 3: Hàm số nhiều biến số

    Chương 4: Cực trị của hàm nhiều biến

    Chương 5: Tích phân

    Chương 6: Chương trình vi phân

    Chương 7: Phương trình sai phân

    Trong phạm vi của các chương trình nói trên, các tác giả lần lượt trình bày các vấn đề cơ bản của Giải tích Toán học, cùng với một số nội dung chọn lọc của lý thuyết phương trình vi phân và phương trình sai phân. Những nội dung đó được lựa chọn căn cứ vào nhu cầu sử dụng các phương pháp Toán học trong phân tích kinh tế, với mục đích trang bị kiến thức toán học cần thiết để sinh viên có thể tiếp cận với phương pháp mô hình trong Kinh tế học thực chứng.

    Chương 1: Hàm số và giới hạn

    1. Các khái niệm cơ bản về hàm số một biến số

    II. Quan hệ hàm số

    III. Đồ thị của hàm số

    IV. Khái niệm hàm ngược

    V. Một số đặc trưng hàm số

    VI. Các hàm số cơ bản và các phép toán sơ cấp đối với hàm số

    VII. Các mô hình hàm số trong phân tích kinh tế

    2. Dãy số và giới hạn của dãy số

    II. Giới hạn của dãy số

    III. Đại lượng vô cùng bé

    IV. Các định lý cơ bản về giới hạn

    V. Cấp số nhân: Các hệ thức cơ bản và ứng dụng trong phân tích tài chính

    3. Giới hạn của hàm số

    I. Khái niệm giới hạn của hàm số

    II. Giới hạn của các hàm số sơ cấp cơ bản

    III. Các định lý cơ bản về giới hạn

    IV. Hai giới hạn cơ bản dạng vô định

    V. Vô cùng bé và vô cùng lớn

    4. Hàm số liên tục

    I. Khái niệm hàm số liên tục

    II. Các phép toán sơ cấp đối với các hàm số liên tục

    III. Các tính chất cơ bản của hàm số liên tục trên một khoảng

    Chương 2: Đạo hàm và vi phân

    1. Đạo hàm của hàm số

    I. Khái niệm đạo hàm

    II. Đạo hàm của các hàm sơ cấp cơ bản

    III. Các quy tắc tính đạo hàm

    2. Vi phân của hàm số

    I. Khái niệm vi phân và liên hệ với đạo hàm

    II. Các quy tắc tính vi phân

    3. Các định lý cơ bản về hàm số khả vi

    I. Định lý Fermat

    II. Định lý Rolle

    III. Định lý Lagrange

    IV. Định lý Cauchy

    4. Đạo hàm và vi phân cấp cao. Công thức Taylor

    I. Đạo hàm cấp cao

    II. Vi phân cấp cao

    III. Công thức Taylor

    5. Ứng dụng đạo hàm trong toán học

    I. Tính các giới hạn dạng vô định

    II. Đạo hàm và xu hướng biến thiên của hàm số

    III. Tìm các điểm cực trị của hàm số

    IV. Liên hệ giữa đạo hàm cấp hai và tính lồi lõm của hàm số

    6. Sử dụng đạo hàm trong phân tích kinh tế

    I. Ý nghĩa của đạo hàm trong kinh tế

    II. Tính hệ số co dãn

    III. Quan hệ giữa hàm bình quân và hàm cận biên

    IV. Sự lựa chọn tối ưu trong kinh tế

    Chương 3: Hàm số nhiều biến số

    1. Các khái niệm cơ bản

    I. Hàm số hai biến

    II. Hàm số n biến số

    III. Phép hợp hàm

    IV. Một số hàm số trong phân tích kinh tế

    2. Giới hạn và tính liên tục

    I. Giới hạn của hàm số 2 biến số

    II. Giới hạn của hàm n biến

    III. Hàm số liên tục

    3. Đạo hàm riêng và vi phân

    I. Số gia riêng và số gia toàn phần

    II. Đạo hàm riêng

    III. Đạo hàm riêng của hàm hợp

    V. Đạo hàm riêng và vi phân cấp cao

    VI. Ứng dụng đạo hàm riêng trong kinh tế học

    4. Hàm thuần nhất

    I. Khái niệm hàm thuần nhất và công thức Euler

    II. Vấn đề hiệu quả của quy mô

    I. Hàm ẩn một biến

    II. Hàm ẩn nhiều biến

    III. Hệ hàm ẩn

    IV. Tỷ lệ thay thế cận biên

    V. Phân tích tĩnh so sánh trong kinh tế

    Chương 4: Cực trị của hàm nhiều biến

    1. Cực trị không có điều kiện ràng buộc

    I. Khái niệm cực trị và điều kiện ràng buộc

    II. Điều kiện đủ

    2. Cực trị có điều kiện ràng buộc

    I. Cực trị có điều kiện với hai biến chọn và một phương trình ràng buộc

    II. Cực trị có điều kiện với n biến chọn và một phương trình ràng buộc

    III. Ý nghĩa của nhân tử Lagrange

    IV. Cực trị có điều kiện với n biến chọn và m phương trình ràng buộc

    V. Cực trị có điều kiện với ràng buộc là bất phương trình

    3. Các bài toán về sự lựa chọn của người tiêu dùng

    I. Bài toán tối đa hóa lợi ích

    II. Tối thiểu hóa chi phí tiêu dùng

    III. Phương trình Slutsky

    4. Các bài toán về sự lựa chọn của nhà sản xuất

    I. Lựa chọn tối ưu mức sử dụng các yếu tố sản xuất

    II. Lựa chọn mức sản lượng tối ưu

    Chương 5: Phép toán tích phân

    1. Nguyên hàm và tích phân bất định

    I. Nguyên hàm của hàm số

    II. Tích phân bất định

    III. Các công thức tích phân cơ bản

    2. Các phương pháp tính tích phân

    I. Phương pháp triển khai

    II. Sử dụng tính bất biến của biểu thức tích phân

    III. Phương pháp đổi biến số

    IV. Phương pháp tích phân từng phần

    3. Một số dạng tích phân cơ bản

    I. Tích phân của các phân thức hữu tỉ

    II. Tích phân của một số biểu thức chứa căn thức

    III. Tích phân của một số biểu thức lượng giác

    4. Tích phân xác định

    I. Khái niệm tích phân xác định

    II. Điều kiện khả tích

    III. Các tính chất cơ bản của tích phân xác định

    IV. Liên hệ với tích phân bất định

    V. Phương pháp đổi biến

    VI. Phương pháp tích phân từng phần

    VII. Tích phân suy rộng

    5. Ứng dụng tích phân trong kinh tế học

    I. Ứng dụng tích phân bất định

    II. Ứng dụng tích phân xác định

    Chương 6: Phương trình vi phân

    1. Các khái niệm cơ bản

    2. Phương trình vi phân tuyến tính cấp 1

    3. Một số loại phương trình vi phân phi tuyến cấp 1 có thể giải được

    4. Phân tích tác động trong kinh tế: Một số mô hình phương trình vi phân cấp 1

    5. Phương trình vi phân cấp hai

    6. Phân tích tác động trong kinh tế: Một số mô hình phương trình vi phân tuyến tính cấp 2

    Chương 7: Phương trình sai phân

    1. Khái niệm sai phân và phương trình sai phân

    2. Phương trình sai phân cấp một

    3. Phương trình sai phân tuyến tính cấp hai

    Đáp số bài tập

    Tài liệu tham khảo

    Sachkinhte.com.vn trân trọng giới thiệu!

    --- Bài cũ hơn ---

  • Tuyển Sinh, Du Học: Xuất Bản Bản Tiếng Việt Sách “giải Tích” Của James Stewart
  • Phép Tính Vi Tích Phân Hàm Một Biến
  • Giải Tích Hàm Là Gì (Tiếng Pháp) ?
  • Giải Tích Hàm Là Gì ?
  • Từ Chuỗi Fourier Đến Tích Phân Fourier
  • Tổng Hợp Tài Liệu Bài Tập Và Đề Thi Môn Toán Cao Cấp 2 (Giải Tích)

    --- Bài mới hơn ---

  • Tính Chất Khả Vi Được Suy Ra Từ Tính Khả Tích
  • Giải Dùm Mấy Bài Giải Tích Hàm Này Với.
  • Đề Cương Ôn Tập Môn Giải Tích 2 De Cuong On Tap Mon Giai Tich 2 Doc
  • Hàm Số Khả Vi Và Vi Phân Toàn Phần
  • Sách Giải Bài Tập Toán Lớp 8 Bài 8: Diện Tích Xung Quanh Của Hình Chóp Đều
  • 1.1. Các khái niệm cơ bản về hàm số một biến số

    – Biến số

    – Quan hệ hàm số

    – Đồ thị hàm số

    – Khái niệm hàm ngược

    – Một số đặc trưng của hàm số: Hàm số đơn điệu (hàm số đơn điệu tăng hay hàm số đồng biến/hàm số đơn điệu giảm hay hàm số nghịch biến); Hàm số bị chặn; Hàm số chẵn, hàm số lẻ; Hàm số tuần hoàn

    – Các hàm số sơ cấp: Hàm hằng: f(x) = C; Hàm số luỹ thừa: f(x) = x^a; Hàm số mũ: f(x) = e^x; Hàm số logarit: f(x) = log_a(x); Các hàm số lượng giác: f(x) = sinx, f(x) = cosx, f(x) = tanx, f(x) = cotx; Các hàm số lượng giác ngược

    – Một số mô hình hàm số trong phân tích kinh tế: Hàm cung và hàm cầu; Hàm sản xuất ngắn hạn; Hàm doanh thu, hàm chi phí và hàm lợi nhuận; Hàm tiêu dùng và hàm tiết kiệm;

    1.2. Dãy số và giới hạn của dãy số

    – Dãy số

    – Giới hạn của dãy số: Khái niệm dãy số hội tụ, nguyên lý hội tụ, giới hạn vô hạn,

    – Đại lượng vô cùng bé

    – Các định lý cơ bản về giới hạn: Các quy tắc tính giới hạn

    – Cấp số nhân và ứng dụng trong phân tích tài chính: giá trị hiện tại và giá trị tương lai

    1.3. Giới hạn của hàm số

    – Khái niệm giới hạn của hàm số: Định nghĩa, giới hạn một phía

    – Giới hạn của các hàm số sơ cấp cơ bản

    – Các định lý cơ bản về giới hạn: Tính chất của hàm số có giới hạn hữu hạn, các quy tắc tính giới hạn, các dạng vô định

    – Hai giới hạn cơ bản dạng vô định

    – Vô cùng bé và vô cùng lớn

    1.4. Hàm số liên tục

    – Khái niệm hàm số liên tục: Hàm số liên tục tại một điểm

    – Các phép toán sơ cấp đối với các hàm số liên tục

    – Các tính chất cơ bản của hàm số liên tục trên một khoảng

    2.1. Đạo hàm của hàm số

    – Khái niệm đạo hàm

    – Đạo hàm của các hàm sơ cấp cơ bản

    – Các quy tắc tính đạo hàm

    – Đạo hàm của hàm hợp

    2.2. Vi phân của hàm số

    – Khái niệm vi phân và liên hệ với đạo hàm

    – Các quy tắc tính vi phân

    2.3. Đạo hàm và vi phân cấp cao. Công thức Taylor và Công thức Maclaurin

    – Đạo hàm cấp cao

    – Vi phân cấp cao

    – Khai triển Taylor và Khai triển Maclaurin

    CHƯƠNG 3. HÀM SỐ NHIỀU BIẾN SỐ

    3.2. Giới hạn và tính liên tục

    – Giới hạn của hàm 2 biến

    – Giới hạn của hàm n biến

    – Hàm số liên tục

    3.3. Đạo hàm riêng và vi phân

    – Số gia riêng và số gia toàn phần

    – Đạo hàm riêng

    – Đạo hàm riêng của hàm hợp

    – Vi phân

    – Đạo hàm riêng và vi phân cấp cao

    – Ứng dụng trong kinh tế học

    3.5. Hàm ẩn

    – Hàm ẩn một biến

    – Hàm ẩn n biến

    – Hệ hàm ẩn

    – Tỷ lệ thay thế cận biên

    – Phân tích tĩnh so sánh trong kinh tế học

    CHƯƠNG 4. CỰC TRỊ CỦA HÀM SỐ NHIỀU BIẾN SỐ

    4.3. Các bài toán về sự lựa chọn của người tiêu dùng

    – Bài toán tối đa hoá lợi ích

    – Bài toán tối thiểu hoá chi phí

    – Phương trình Slutsky

    CHƯƠNG 5. PHÉP TOÁN TÍCH PHÂN

    5.1. Nguyên hàm và tích phân bất định

    – Nguyên hàm của hàm số

    – Tích phân bất định

    – Các công thức tích phân cơ bản

    5.3. Một số dạng tích phân cơ bản

    – Tích phân của các phân thức hữu tỷ

    – Tích phân của một số biểu thức chứa căn

    – Tích phân của một số biểu thức lượng giác

    5.4. Tích phân xác định

    – Khái niệm tích phân xác định

    – Điều kiện khả tích

    – Các tính chất cơ bản của tích phân xác định

    – Liên hệ với tích phân bất định

    – Phương pháp đổi biến

    – Phương pháp tích phân từng phần

    – Tích phân suy rộng

    CHƯƠNG 6. PHƯƠNG TRÌNH VI PHÂN

    6.3. Một số phương trình vi phân phi tuyến cấp 1 có thể giải được

    – Phương trình phân ly biến số

    – Một số phương trình đưa được về dạng phân ly biến số

    – Phương trình Bernoulli

    – Phương trình vi phân toàn phần và phương pháp thừa số tích phân

    – Ví dụ áp dụng: Xác định hàm cầu khi biết hàm số biểu diễn hệ số co dãn của cầu theo giá

    CHƯƠNG 7. PHƯƠNG TRÌNH SAI PHÂN

    3/Đề thi Toán cao cấp 2 (cập nhật sau)

    3.1. Đề kiểm tra 20%

    + Tổng hợp đề kiểm tra giữa kỳ.

    3.2. Đề thi Toán 2

    + Đề thi Toán 2 – K54

    + Đề thi Toán 2 – K55

    + Đề thi Toán 2 – K56

    --- Bài cũ hơn ---

  • Ôn Tập Chương Iii. Nguyên Hàm. Tích Phân Và Ứng Dụng
  • Sách Giáo Khoa Đại Số Và Giải Tích 11 Nâng Cao
  • Công Thức Giải Tích Các Phép Toán Vector Và Tensor
  • Môn Giải Tích Tiếng Anh Là Gì? Mục Đích Của Việc Học Môn Giải Tích
  • Tóm Lược Một Số Kiến Thức Về Đại Số Tổ Hợp Ứng Dụng Trong Tin Học
  • Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải

    --- Bài mới hơn ---

  • Lý Thuyết Toán Lớp 6
  • Các Dạng Toán Lớp 6 Và Phương Pháp Giải
  • Giải Bài Tập Ngữ Văn Lớp 6 Bài 11: Cụm Danh Từ
  • Những Bài Toán Nổi Tiếng Hóc Búa Trên Thế Giới
  • Đáp Án Sách Lưu Hoằng Trí Lớp 6
  • A. Lý thuyết 1. Tập hợp

    Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.

    Ví dụ:

    + Tập hợp các đồ vật (sách, bút) đặt trên bàn.

    + Tập hợp học sinh lớp 6A.

    + Tập hợp các số tự nhiên lớn hơn 7.

    + Tập hợp các chữ cái trong hệ thống chữ cái Việt Nam.

    2. Cách viết tập hợp

    + Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C,…

    + Để viết tập hợp thường có hai cách viết:

    * Liệt kê các phần tử của tập hợp

    Ví dụ: Gọi A là tập hợp các số tự nhiên nhỏ hơn 5

    A = {1; 2; 3; 4}

    * Theo tính chất đặc trưng cho các phần tử của tập hợp đó.

    N là tập hợp các số tự nhiên

    Các số 0; 1; 2; 3; 4 là các phần tử của tập hợp A

    + Kí hiệu:

    * 2 ∈ A đọc là 2 thuộc hoặc là 2 thuộc phần tử của A.

    * 6 ∉ A đọc là 6 không thuộc A hoặc là 6 không là phần tử của A.

    Chú ý:

    * Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số.

    * Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.

    * Ngoài ra ta còn minh họa tập hợp bằng một vòng tròn kín, mỗi phần tử của tập hợp được biểu diễn bằng 1 dấu chấm bên trong vòng tròn kín đó.

    Ví dụ: Tập hợp B trong hình vẽ là B = {0; 2; 4; 6; 8}

    B. Bài tập

    Câu 1: Cho tập hợp A là các chữ cái trong cụm từ: “Thành phố Hồ Chí Minh”.

    a) Hãy liệt kê các phần tử trong tập hợp A.

    b) Trong các kết luận sau, kết luận là đúng?

    + b thuộc tập hợp A

    + t thuộc tập hợp A

    + m thuộc tập hợp A.

    Hướng dẫn giải:

    a) Các phần tử trong tập hợp A là A = {t; h; a; n; p; o; c; i; m}

    b) Trong các kết luận, các kết luận đúng là

    + t thuộc tập hợp A

    + m thuộc tập hợp A.

    Câu 2: Cho tập hợp A = {1; 2; 3; 4; 5; 6} và B = {1; 3; 5; 7; 9}

    a) Viết tập hợp C gồm các phần tử thuộc A nhưng không thuộc B

    Hướng dẫn giải:

    a) Các phân tử thuộc A không thuộc B là 2; 4; 6

    Nên tập hợp C là C = {2; 4; 6}

    b) Các phần tử vừa thuộc A vừa thuộc B là 1; 3; 5

    Nên tập hợp D là D = {1; 3; 5}

    c) Các phần tử thuộc B nhưng không thuộc A là 7; 9

    Nên tập hợp E là E = {7; 9}

    tag: những phát triển về lũy thừa kì tìm sách đáp án so sánh tap nhanh chia hết bổ trợ chương co dap an violet ôn hè lên pdf

    --- Bài cũ hơn ---

  • Sáng Kiến Kinh Nghiệm Rèn Luyện Kỹ Năng Trình Bày Lời Giải Bài Toán Cho Học Sinh Lớp 6
  • Chọn Mua Sách Toán Lớp 1 Nâng Cao Có Lời Giải Cho Con
  • Bản Mềm: 29 Bài Toán Nâng Cao Lớp 1
  • 80 Bài Toán Ôn Luyện Học Sinh Giỏi Lớp 2
  • Toán Lớp 2 Nâng Cao Có Lời Giải
  • Đề Thi Hk1 Môn Toán Lớp 3 Có Lời Giải

    --- Bài mới hơn ---

  • 9 Đề Thi Học Kỳ 1 Môn Toán Lớp 3 Có Đáp Án Năm Học 2022
  • Tuyển Tập Đề Thi Học Sinh Giỏi Toán Lớp 3
  • Giải Sách Lưu Hoằng Trí 8
  • Giải Unit 6 Sách Bài Tập Lưu Hoằng Trí 8
  • Giải Bài Tập Lưu Hoằng Trí 8
  • Đề thi học kì 1 môn Toán lớp 3 có lời giải giúp các em học sinh ôn tập chuẩn bị tốt cho bài kiểm tra HK1 Toán lớp 3.

    – Sắp xếp theo thứ tự của đề bài.

    Cách giải :

    a) Đ – S

    b) S – Đ

    Câu 2. Phương pháp giải :

    – Đặt tính : Viết các số theo cách đặt tính cột dọc, chữ số cùng hàng thẳng cột với nhau.

    – Tính : Cộng các số lần lượt từ phải sang trái.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    a) S; Đ; S

    b) Đ; S; S

    c) S; S; Đ.

    Câu 3. Phương pháp giải :

    Đội A : 417m

    Đội B : 435m

    Cả hai : …m?

    Muốn tìm lời giải ta lấy số mét đường đội A làm được cộng với số mét đường đội B đã làm được.

    Cách giải :

    Cả hai đội làm được số mét đường là :

    417 + 435 = 852 (m)

    Đáp số : 852 m.

    Đáp án cần chọn là B.

    Câu 4. Phương pháp giải :

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    Phương pháp giải :

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    a)

    $ displaystyle begin{array}{l}x+132=454,,,,,,,,,,,,x=454-132,,,,,,,,,,,,x=322end{array}$

    Vậy điền vào các ô trống lần lượt là : Đ; S; S.

    b)

    $ displaystyle begin{array}{l}x-213=326,,,,,,,,,,,,x=326+213,,,,,,,,,,,,x=539end{array}$

    Cần điền vào ô trống lần lượt là : Đ; S; S.

    Câu 5. Phương pháp giải :

    Muốn tìm số bị trừ thì ta lấy hiệu cộng số trừ.

    – So sánh rồi điền dấu thích hợp vào chỗ trống.

    Cách giải :

    a) 400 + 8 = 408

    c) 120 − 20 < 100 + 1

    d) 998 = 900 + 90 + 8

    Câu 7. Phương pháp giải :

    – Đặt tính : Viết các chữ số cùng hàng thẳng cột với nhau.

    – Tính : Cộng hoặc trừ lần lượt từ phải sang trái.

    Khối Ba : 352 học sinh

    Khối Ba ít hơn khối Hai : 28 học sinh

    Khối Hai : … học sinh ?

    Muốn tìm số học sinh của khối Hai ta lấy 352 cộng với 28.

    Cách giải :

    Khối lớp Hai có số học sinh là:

    352 + 28 = 380 (học sinh)

    Đáp số: 380 học sinh.

    Câu 9. Phương pháp giải :

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    Cách giải :

    a)

    $ displaystyle begin{array}{l}x-132=368,,,,,,,,,,,,x=368+132,,,,,,,,,,,,x=500end{array}$

    b)

    $ displaystyle begin{array}{l}x+208=539,,,,,,,,,,,,x=539-208,,,,,,,,,,,,x=331end{array}$

    Câu 10. Phương pháp giải :

    – Xác định các đại lượng trong bài toán, giá trị đã biết và yêu cầu của bài toán.

    – Tìm độ dài của mảnh vải trắng : Lấy độ dài của mảnh vải xanh cộng với 32m.

    – Tìm độ dài của cả hai mảnh vải : Lấy độ dài mảnh vải xanh cộng với độ dài mảnh vải trắng vừa tìm được.

    Cách giải :

    Vải trắng dài số mét là:

    208 + 32 = 240 (m)

    Có tất cả số mét vải là:

    208 + 248 = 448 (m)

    Đáp số: 448 m.

    --- Bài cũ hơn ---

  • Skkn: Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 1
  • Sáng Kiến Kinh Nghiệm Giải Toán Có Lời Văn Cho Hs Lớp 1
  • Sáng Kiến Kinh Nghiệm: Một Số Biện Pháp Giúp Học Sinh Giải Toán Có Lời Văn Ở Lớp 3
  • Sang Kien Kinh Nghiem Lop 3
  • Một Số Kinh Nghiệm Giúp Học Sinh Lớp 3/3 Trường Tiểu Học Trần Bình Trọng Giải Các Bài Toán Có Lời Văn
  • Bài Giảng Toán Cao Cấp

    --- Bài mới hơn ---

  • Dịch Tiếng Anh Chuyên Ngành Vật Lý
  • Từ Vựng Và Thuật Ngữ Tiếng Anh Chuyên Ngành Toán Học
  • Dịch Tiếng Anh Sang Tiếng Việt Trực Tuyến
  • Ct Tính Chu Vi, Diện Tích Hình Thang 【Thường
  • Hướng Dẫn Giải Bài Toán Hình Tam Giác
  • 10/13/2012 1 Ø Chương 5. Phép tính tích phân hàm một biến số §1. Tích phân bất định §2. Tích phân xác định §3. Ứng dụng của tích phân xác định §4. Tích phân suy rộng §1. TÍCH PHÂN BẤT ĐỊNH 1.1. Định nghĩa * Hàm số ( )F x được gọi là một nguyên hàm của ( )f x trên khoảng ( ; )a b nếu ( ) ( ), ( ; )F x f x x a b    . Ký hiệu ( )f x dx (đọc là tích phân). Nhận xét * Nếu ( )F x là nguyên hàm của ( )f x thì ( )F x C cũng là nguyên hàm của ( )f x . Ø Chương 5. Phép tính tích phân hàm một biến số Tính chất 1) . ( ) ( ) ,k f x dx k f x dx k   ¡ 2) ( ) ( )f x dx f x C   3) ( ) ( )d f x dx f x dx  4) k k kx x  tùy ý ( 1,k n ). Lập tổng tích phân: 1 1 ( )( ) n k k k k f x x       . §2. TÍCH PHÂN XÁC ĐỊNH 2.1. Định nghĩa. Cho hàm số ( )f x xác định trên a b thành n đoạn nhỏ bởi các điểm chia Ký hiệu là ( ) . b a I f x dx  Giới hạn hữu hạn (nếu có) 1max( ) 0 lim k kk x x I     được gọi là tích phân xác định của ( )f x trên đoạn ( ) ( ) b b b a a a f x g x dx f x dx g x dx     3) ( ) 0; ( ) ( ) a b a a a b f x dx f x dx f x dx     4) ( ) ( ) ( ) , ( ) 0 b a f x x a b f x dx     Ø Chương 5. Phép tính tích phân hàm một biến số 6) ( ) ( ), m f x M x a b    ( ) ( ) ( ) b a m b a f x dx M b a     9) Nếu ( )f x liên tục trên đoạn : ( ) ( )( ) b a c a b f x dx f c b a    . Ø Chương 5. Phép tính tích phân hàm một biến số 2.2. Công thức Newton – Leibnitz Nếu ( )f x liên tục trên   thì: ( ) 0f x dx    . 3) Hàm số ( )f x liên tục và chẵn trên  nên 0I  . Ø Chương 5. Phép tính tích phân hàm một biến số §3. ỨNG DỤNG CỦA TÍCH PHÂN XÁC ĐỊNH 2 1( ) ( ) b a S f x f x dx     2 1( ) ( ) d c S g y g y dy     a) Biên hình phẳng cho bởi phương trình tổng quát 3.1. Tính diện tích S của hình phẳng S S Ø Chương 5. Phép tính tích phân hàm một biến số VD 1. Tính diện tích hình phẳng S giới hạn bởi các đường 2y x và 4y x . A. 1 15 S  ; B. 2 15 S  C. 4 15 S  ; D. 8 15 S  . Giải. Hoành độ giao điểm: 2 4 1, 0x x x x     0 1 2 4 2 4 1 0 4 ( ) ( ) . 15 S x x dx x x dx C          10/13/2012 5 Ø Chương 5. Phép tính tích phân hàm một biến số Cách khác Hoành độ giao điểm 2 4 1, 0x x x x     1 1 2 4 2 4 1 0 2S x x dx x x dx        1 2 4 0 4 2 ( ) . 15 x x dx C    Ø Chương 5. Phép tính tích phân hàm một biến số VD 2. Tính diện tích hình phẳng S giới hạn bởi các đường 2x y và 2y x  . Giải. Biến đổi: 2 2 2 2 x y x y y x x y             . Tung độ giao điểm: 2 2 1, 2y y y y     22 2 2 3 11 1 1 27 ( 2) 2 . 2 3 6 S y y dy y y y                   Ø Chương 5. Phép tính tích phân hàm một biến số VD 3. Tính diện tích hình phẳng S giới hạn bởi các đường 1xy e  , 2 3xy e  và 0x  . A. 1ln 4 2  ; B. ln 4 1 2  ; C. 1 ln 2 2  ; D. 1ln 2 2  Giải. Hoành độ giao điểm: 21 3x xe e   2 2 0 2 ln 2x x xe e e x        . ln 2ln 2 2 2 00 1 ( 2) 2 2 x x x xS e e dx e e x            1 1ln 4 ln 4 2 2 A     . Ø Chương 5. Phép tính tích phân hàm một biến số VD 4. Tính diện tích hình elip 2 2 2 2 : 1 x y S a b   . Giải. Phương trình tham số của elip là: cos , t    thì: ( ). ( ) .S y t x t dt     Ø Chương 5. Phép tính tích phân hàm một biến số 2 2 2 0 0 sin .( sin ) sinS b t a t dt ab t dt       2 0 1 cos2 2 t ab dt ab      . Ø Chương 5. Phép tính tích phân hàm một biến số 3.2. Tính độ dài l của đường cong a) Đường cong có phương trình tổng quát Cho cung “AB có phương trình ( ), . b AB a l f x dx  VD 5. Tính độ dài cung parabol 2 2 x y  từ gốc tọa độ O(0; 0) đến điểm 11; 2 M       . 10/13/2012 6 Ø Chương 5. Phép tính tích phân hàm một biến số Giải. Ta có: 1 1 2 2 0 0 1 ( ) 1l y dx x dx     1 2 2 0 1 1 ln 1 2 x x x x              2 1 ln 1 22 2   . Ø Chương 5. Phép tính tích phân hàm một biến số Cho cung “AB có phương trình tham số ( ) , . b a V f x dx  Giải. 1 1 ln ( ln ) e e V x dx x x x       . Ø Chương 5. Phép tính tích phân hàm một biến số VD 8. Tính V do 2 2 2 2 ( ) : 1 x y E a b   quay quanh Ox. Giải. Ta có:   2 2 2 2 2 2 2 2 2 1 x y b y a x a b a      . Vậy   2 2 2 2 2 4 3 a a b V a x dx ab a       . Ø Chương 5. Phép tính tích phân hàm một biến số b) Vật thể quay quanh Oy Thể tích V của vật thể do miền phẳng S giới hạn bởi ( )x g y , 0x  , y c và y d quay quanh Oy là: 2f x x a b   . Khi đó, diện tích hình phẳng giới hạn bởi đồ thị ( )y f x và trục hoành là: ( ) b a S f x dx  . Ø Chương 5. Phép tính tích phân hàm một biến số §4. TÍCH PHÂN SUY RỘNG Cho hàm số ( ) 0, ( 0)a b     . Giới hạn (nếu có) của ( ) b a f x dx   khi 0  được gọi là tích phân suy rộng loại 2 của ( )f x trên [ ; )a b . Ký hiệu: 0 ( ) lim ( ) . b b a a f x dx f x dx     Ø Chương 5. Phép tính tích phân hàm một biến số * Định nghĩa tương tự: 0 ( ) lim ( ) a b b a f x dx f x dx     (suy rộng tại a ); 0 ( ) lim ( ) b b a a f x dx f x dx      (suy rộng tại a , b ). * Nếu các giới hạn trên tồn tại hữu hạn thì ta nói tích phân hội tụ, ngược lại là tích phân phân kỳ. Ø Chương 5. Phép tính tích phân hàm một biến số VD 10. Khảo sát sự hội tụ của 0 , 0 b dx I b x   . Giải * Trường hợp α = 1: 0 0 0 lim lim ln ln lim ln b bdx I x b x                . * Trường hợp α khác 1: 1 0 0 0 1 lim lim lim 1 b b bdx I x dx x x                   Ø Chương 5. Phép tính tích phân hàm một biến số   1 1 1 0 1 , 1lim 11 , 1. b b                 Vậy § Với 1  : 1 1 b I    (hội tụ). § Với 1  : I   (phân kỳ). Ø Chương 5. Phép tính tích phân hàm một biến số VD 11. Tính tích phân 1 3 2 1 6 3 1 9 dx I x    . A. 3 I    ; B. 3 I   ; C. 6 I   ; D. I  . Giải. 1 1 3 3 12 1 6 6 (3 ) arcsin 3 31 (3 ) d x I x B x        . 10/13/2012 11 Ø Chương 5. Phép tính tích phân hàm một biến số VD 12. Tính tích phân 3 2 1 . ln e dx I x x   . Giải. Đặt lnt x 21 1 1 33 3 2 0 0 0 3 3 dt I t dt t t        . Ø Chương 5. Phép tính tích phân hàm một biến số VD 13. Tính tích phân 2 2 1 dx I x x    . Giải. Ta có: 2 2 1 1 1 1 ( 1) 1 dx I dx x x x x           2 0 1 1 1 lim 1 dx x x         2 0 1 1 lim ln x x          . Ø Chương 5. Phép tính tích phân hàm một biến số VD 14. Tích phân suy rộng 1 0 ( 1)(2 ) x dx I x x x      hội tụ khi và chỉ khi: A. 1  ; B. 1 2   ; C. 1 2   ; D.   ¡ . 4.1.2. Các tiêu chuẩn hội tụ Các tiêu chuẩn hội tụ như tích phân suy rộng loại 1. Chú ý Nếu ( ) ( ) ( )f x g x x b: thì ( ) b a f x dx và ( ) b a g x dx có cùng tính chất (với b là cận suy rộng). Ø Chương 5. Phép tính tích phân hàm một biến số Giải. Khi 0x  thì 1 2 1 1 . ( 1)(2 ) 2 2 x x x x x x x       : I hội tụ 1 1 0 2 1 2 dx x    hội tụ 1 11 2 2 C       . Ø Chương 5. Phép tính tích phân hàm một biến số Giải. 1 1 2 2 0 0( 1)sin ( 1)sin x dx dx I x x x x        . VD 15. Tích phân suy rộng 1 2 0 1 ( 1)sin x I dx x x      phân kỳ khi và chỉ khi: A. 1  ; B. 1 2   ; C. 1 2   ; D.   ¡ . Ø Chương 5. Phép tính tích phân hàm một biến số I phân kỳ 1 2 0 ( 1)sin x dx x x     phân kỳ. Do 1 1 1 12 0 0 0 2( 1)sin dx dx dx xx x x     : hội tụ nên Vậy I phân kỳ 1 11 2 2 B       . Mặt khác, 1 1 1 12 0 0 0 2( 1)sin x dx x dx dx xx x x        : . 10/13/2012 12 Ø Chương 5. Phép tính tích phân hàm một biến số Chú ý * Cho 1 2I I I  với 1 2, ,I I I là các tích phân suy rộng ta có: 1) 1I và 2I hội tụ I hội tụ. 2) 1 2 ( ) 0 I I    phaân kyø hoặc 1 2 ( ) 0 I I     phaân kyø thì I phân kỳ. 3) 1 2 ( ) 0 I I    phaân kyø hoặc 1 2 ( ) 0 I I     phaân kyø thì chưa thể kết luận I phân kỳ. Ø Chương 5. Phép tính tích phân hàm một biến số VD 16. 1 2 0 1 sin x I dx x x     phân kỳ khi và chỉ khi: A. 1 4   ; B. 1 4   ; C. 1 2   ; D.   ¡ . Giải. Ta có: 1 1 1 22 2 0 0sin sin x dx dx I I I x x x x       . Ø Chương 5. Phép tính tích phân hàm một biến số Mặt khác: 1) 1 1 1 2 32 3 0 0 0 2sin dx dx dx I x x x x      : . 2) 1 1 2 0 0 sin x dx I x x    . Vậy 1 2I I I  phân kỳ với mọi D  ¡ .

    --- Bài cũ hơn ---

  • Xuất Bản Bản Tiếng Việt Sách “giải Tích” Của James Stewart
  • Ra Mắt Sách ‘giải Tích Cho Kinh Doanh, Kinh Tế Học, Khoa Học Sự Sống Và Xã Hội’
  • Giải Bài Tập 1 Trang 43 Sgk Giải Tích 12
  • Lý Thuyết & Giải Bài 3: Ứng Dụng Của Tích Phân Trong Hình Học
  • Giáo Trình Giải Tích 2 Bùi Xuân Diệu
  • Tổng Hợp Các Dạng Toán Về Phương Trình Đường Thẳng Trong Các Đề Thi (Có Lời Giải)

    --- Bài mới hơn ---

  • Các Dạng Toán Về Phương Trình Đường Thẳng Trong Không Gian Oxyz Và Bài Tập
  • 8 10 Bài Tập Phép Đồng Dạng File Word Có Lời Giải Chi Tiết
  • Bài Tập Trắc Nghiệm Phương Trình Mặt Phẳng Có Đáp Án
  • Giải Sbt Bài 1. Quy Tắc Đếm
  • Giải Sbt Công Nghệ 7 Bài 33: Một Số Phương Pháp Chọn Lọc Và Quản Lý Giống Vật Nuôi
  • Published on

    Tổng hợp các dạng toán về phương trình đường thẳng trong các đề thi (có lời giải) (hệ trục Oxy). được Sưu tầm & biên soạn: Lộc Phú Đa – Việt Trì – Phú Thọ . Tài liệu có 59 trang file word. Các bài toán đều có hướng dẫn giải rõ ràng và chi tiết. Đây là tài liệu không thể thiếu cho các em đang ôn thi THPT quốc gia môn Toán

    http://giavienb.net/

    1. 1. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 1 Jun . 17 C E  Bài 1Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng 27 2 Hướng dẫn:V× G n”m trªn ®-êng th¼ng 02  yx nªn G cã täa ®é )2;( ttG  . Khi ®ã ( 2;3 )AG t t    , ( 1; 1)AB     VËy diÖn tÝch tam gi¸c ABG lµ     1)3()2(2 2 1 .. 2 1 22 2 22  ttABAGABAGS = 2 32 t NÕu diÖn tÝch tam gi¸c ABC b”ng 27 2 th× diÖn tÝch tam gi¸c ABG b”ng 27 9 6 2  . VËy 2 3 9 2 2 t   , suy ra 6t hoÆc 3t . VËy cã hai ®iÓm G : )1;3(,)4;6( 21  GG . V× G lµ träng t©m tam gi¸c ABC nªn 3 ( )C G A Bx x x x   vµ 3 ( )C G A By y y y   . Víi )4;6(1 G ta cã )9;15(1 C , víi )1;3(2 G ta cã )18;12(2 C Bài 2Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; 3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. Hướng dẫn:Gọi  là đường thẳng đi qua trung điểm của AC và AB Ta có   6 6 4 , 4 2 2 d A      Vì  là đường trung bình của  ABC    ; 2 ; 2.4 2 8 2d A BC d A     Gọi phương trình đường thẳng BC là: 0x y a   Từ đó: 46 6 8 2 12 16 282 aa a a            Nếu 28a   thì phương trình của BC là 28 0x y   , trường hợp này A nằm khác phía đối với BC và  , vô lí. Vậy 4a  , do đó phương trình BC là: 4 0x y   . Đường cao kẻ từ A của ABC là đường thẳng đi qua A(6;6) và BC : 4 0x y   nên có phương trình là 0x y  . Tọa độ chân đường cao H kẻ từ A xuống BC là nghiệm của hệ phương trình 0 2 4 0 2 x y x x y y              Vậy H (-2;-2) VìBC có phương trình là 4 0x y   nên tọa độ B có dạng: B(m; -4-m) Lại vì H là trung điểm BC nên C(-4-m;m) Suy ra:  5 ; 3 , ( 6; 10 )CE m m AB m m          ;Vì CE AB nên      . 0 6 5 3 10 0ABCE a a a a           2 0 2 12 0 6 a a a a        Vậy     0; 4 4;0 B C    hoặc     6;2 2; 6 B C    . B H
    2. 6. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 6 Jun . 17 độ các đỉnh của tam giác. Bài 16. Bài 17 . 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 2 35 30 25 20 15 10 5 5 10 15 x+y-5=0 Hướng dẫn: * tìm M’ là điểm đối xứng của M qua BD * Viết pt đường cao AH . (Đi qua H, có vtpt:n =HM’ * Tìm các điểm A và B thuộc các đường phân giác BD và đường cao AH ,đối xứng nhau qua M c M’ M H B D 10 8 6 4 2 2 4 6 10 5 5 10 x+7y-31=0 Hướng dẫn: * Viết pt đường thẳng (D) đi qua M và tạo với đt d 1 góc 45°, Đỉnh B là giao của (D) và d * Viết pt đường thẳng (D’) đi qua N và vuông góc với (D). Đỉnh C là giao của d và (D’) * Từ đó suy ra đỉnh A ( Bài toán có nhiều hướng giải khác nhau) A’ C’ A M N C B 6 4 2 2 4 6 15 10 5 5 x+y+3=0 x-4y-2=0 Hướng dẫn: *Do tam giác ABC cân tại A, nên khi dựng hình bình hành AMEM’ thì AMEM’ là hình thoi và tâm I là hình chiếu của M trên đường cao AH. * Từ đó ta có cách xác định các đỉnh A,B,C như sau: +viết pt đt EM ( đi qua M,//d ); Xác dịnh giao điểm E cảu ME và đường cao AH. +Xác định hình chiếu I của M trên AH,và xác định tọa độ của A + xác định B là giao của MA và d +Xác định C là điểm đối xứng của B qua AH H I M’ E B M(1;1) A C
    3. 8. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 8 Jun . 17 Bài 21 Trong mặt phẳng Oxy cho các điểm        A 1;0 ,B 2;4 ,C 1;4 ,D 3;5  và đường thẳng d:3x y 5 0   . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau Hướng dẫn:M thuộc d thi M(a;3a-5 ) – Mặt khác :     1 3;4 5, : 4 3 4 0 3 4 x y AB AB AB x y                 1 4 4;1 17; : 4 17 0 4 1 x y CD CD CD x y             – Tính :       1 2 4 3 3 5 4 4 3 5 1713 19 3 11 , , 5 5 17 17 a a a aa a h M AB h             – Nếu diện tich 2 tam giác bằng nhau thì : 1 2 11 13 19 3 115.13 19 17. 3 111 1 . . 12 13 19 11 32 2 5 17 8 a aa a a AB h CD h a a a                 – Vậy trên d có 2 điểm :  1 2 11 27 ; , 8;19 12 12 M M       Bài 22. Viết phương trình cạnh BC của tam giác ABC , biết tọa độ chân các đường cao tương ứng là A’,B’,C’. Hướng dẫn: Bài chúng tôi hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C Hướng dẫn: – Nếu C nằm trên d : y=x thì A(a;a) do đó suy ra C(2a-1;2a).- Ta có :   0 2 , 2 2 d B d    . – Theo giả thiết :       2 21 4 . , 2 2 2 2 0 2 2 S AC d B d AC a a        2 2 1 3 28 8 8 4 2 2 1 0 1 3 2 a a a a a a                 Gọi H là trực tâm ABC,Dễ c/m dược A’H,B’H,C’H là các đường phân giác trong của tam giác A’B’C’. và viết được phương trình của A’H, ,Từ đó suy ra phương trình của BC. A’ C’ B’ H B C A
    4. 9. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 9 Jun . 17 – Vậy ta có 2 điểm C : 1 2 1 3 1 3 1 3 1 3 ; , ; 2 2 2 2 C C                   Bài 24.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )5;2(,)1;1( BA , ®Ønh C n”m trªn ®-êng th¼ng 04 x , vµ träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 0632  yx . TÝnh diÖn tÝch tam gi¸c ABC. Hướng dẫn: – Tọa độ C có dạng : C(4;a) ,     5 3;4 1 1 : 4 3 7 0 3 4 AB AB x y AB x y              – Theo tính chát trọng tâm ; 1 2 4 1 3 3 1 5 6 3 33 A B C G G A B C GG x x x x x y y y a a yy                       – Do G nằm trên : 2x-3y+6=0 , cho nên : 6 2.1 3 6 0 2 3 a a            . – Vậy M(4;2) và     4.4 3.2 7 1 1 15 , 3 . , 5.3 2 2 216 9 ABCd C AB S AB d C AB          (đvdt) Bài 25.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng13,5 . Hướng dẫn:Ta có : M là trung điểm của AB thì M 3 1 ; 2 2       . Gọi C(a;b) , theo tính chất trọng tam tam giác : 3 3 3 3 G G a x b y       ; Do G nằm trên d :   3 3 2 0 6 1 3 3 a b a b         – Ta có :       3 52 1 1;3 : 3 5 0 , 1 3 10 a bx y AB AB x y h C AB              – Từ giả thiết :   2 5 2 51 1 . , 10. 13,5 2 2 210 ABC a b a b S AB h C AB         2 5 27 2 32 2 5 27 2 5 27 2 22 a b a b a b a b a b                     – Kết hợp với (1) ta có 2 hệ :  1 2 20 6 6 3 2 32 3 38 38 38 20 ; , 6;12 3 3 36 6 122 22 3 18 6 b a b a b a b a a C C a b a b ba b a a                                                    Bài 26Trong mặt phẳng oxy cho ABC có A(2;1) . Đường cao qua đỉnh B có phương trình x- 3y – 7 = 0 .Đường trung tuyến qua đỉnh C có phương trình : x + y +1 = 0 . Xác định tọa độ B và C . Tính diện tích ABC .
    5. 10. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 10 Jun . 17 Hướng dẫn:- Đường thẳng (AC) qua A(2;1) và vuông góc với đường cao kẻ qua B , nên có véc tơ chỉ phương       2 1; 3 : 1 3 x t n AC t R y t          – Tọa độ C là giao của (AC) với đường trung tuyến kẻ qua C : 2 1 3 1 0 x t y t x y           Giải ta được : t=2 và C(4;-5). Vì B nằm trên đường cao kẻ qua B suy ra B(3a+7;a) . M là trung điểm của AB 3 9 1 ; 2 2 a a M         . – Mặt khác M nằm trên đường trung tuyến kẻ qua C :   3 9 1 1 0 3 1; 2 2 2 a a a B            – Ta có :       122 1 1; 3 10, : 3 5 0, ; 1 3 10 x y AB AB AB x y h C AB               Vậy :   1 1 12 . , 10. 6 2 2 10 ABCS AB h C AB   (đvdt). Bài 27 Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC Hướng dẫn:- Gọi B(a;b) suy ra M 5 2 ; 2 2 a b       . M nằm trên trung tuyến nên : 2a-b+14=0 (1). – B,B đối xứng nhau qua đường trung trực cho nên :    : x a t BC t R y b t      . Từ đó suy ra tọa độ N : 6 2 3 6 2 6 0 6 2 a b t x a t a b y b t x x y b a y                       3 6 6 ; 2 2 a b b a N           . Cho nên ta có tọa độ C(2a-b-6;6-a ) – Do C nằm trên đường trung tuyến : 5a-2b-9=0 (2) – Từ (1) và (2) :     2 14 0 37 37;88 , 20; 31 5 2 9 0 88 a b a B C a b b                  Bài 28Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng  : 3 8 0x y   , ‘:3 4 10 0x y    và điểm A(-2 ; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng  , đi qua điểm A và tiếp xúc với đường thẳng  ‘. Hướng dẫn:: – Gọi tâm đường tròn là I , do I thuộc   2 3 : 2 3 ; 2 2 x t I t t y t             – A thuộc đường tròn     2 2 3 3IA t t R     (1) A(5;2) B C x+y-6=0 2x-y+3=0 M N
    6. 11. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 11 Jun . 17 – Đường tròn tiếp xúc với    3 2 3 4 2 10 13 12 ‘ 5 5 t t t R R             . (2) – Từ (1) và (2) :           2 2 2 2 213 12 3 3 25 3 3 13 12 5 t t t t t t             Bài 29 Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn 2 2 ( ): – 2 – 2 1 0,C x y x y   2 2 ( ‘): 4 -5 0C x y x   cùng đi qua M(1; 0). Viết phương trình đường thẳng qua M cắt hai đường tròn ( ), ( ‘)C C lần lượt tại A, B sao cho MA= 2MB Hướng dẫn:* Cách 1. – Gọi d là đường thẳng qua M có véc tơ chỉ phương   1 ; : x at u a b d y bt        – Đường tròn        1 1 1 2 2 2: 1;1 , 1. : 2;0 , 3C I R C I R   , suy ra :           2 2 2 2 1 2: 1 1 1, : 2 9C x y C x y       – Nếu d cắt  1C tại A :   2 2 2 2 2 2 2 2 2 2 0 2 2 2 0 1 ;2 t M ab b a b t bt Ab a b a bt a b                 – Nếu d cắt  2C tại B :   2 2 2 2 2 2 2 2 2 2 0 6 6 6 0 1 ;6 t M a ab a b t at Ba a b a bt a b                   – Theo giả thiết : MA=2MB  2 2 4 *MA MB  – Ta có : 2 22 22 2 2 2 2 2 2 2 2 2 2 2 6 6 4 ab b a ab a b a b a b a b                               2 2 2 2 2 2 2 2 6 :6 6 04 36 4. 36 6 :6 6 0 b a d x yb a b a b a d x ya b a b                    * Cách 2. – Sử dụng phép vị tự tâm I tỉ số vị tự k= 1 2  . ( Học sinh tự làm ) Bài 30 Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm (1;0)H , chân đường cao hạ từ đỉnh B là (0; 2)K , trung điểm cạnh AB là (3;1)M . Hướng dẫn:- Theo tính chất đường cao : HK vuông góc với AC cho nên (AC) qua K(0;2) có véc tơ pháp tuyến      1; 2 : 2 2 0 2 4 0KH AC x y x y           . – B nằm trên (BH) qua H(1;0) và có véc tơ chỉ phương    1; 2 1 ; 2KH B t t      . – M(3;1) là trung điểm của AB cho nên A(5-t;2+2t). – Mặt khác A thuộc (AC) cho nên : 5-t-2(2+2t)+4=0 , suy ra t=1 . Do đó A(4;4),B(2;-2) – Vì C thuộc (AC) suy ra C(2t;2+t) ,    2 2;4 , 3;4BC t t HA      . Theo tính chất đường cao kẻ từ A :    . 0 3 2 2 4 4 0 1HA BC t t t            . Vậy : C(-2;1). H(1;0) K(0;2) M(3;1) A B C
    7. 12. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 12 Jun . 17 – (AB) qua A(4;4) có véc tơ chỉ phương       4 4 2;6 // 1;3 : 1 3 x y BA u AB         3 8 0x y    – (BC) qua B(2;-2) có véc tơ pháp tuyến        3;4 :3 2 4 2 0HA BC x y       3 4 2 0x y    . Bài 31 Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình   2 2 1 : 4 5 0C x y y    và   2 2 2 : 6 8 16 0.C x y x y     Lập phương trình tiếp tuyến chung của  1C và  2 .C Hướng dẫn:: – Ta có :               2 2 22 1 1 1 2 2 2: 2 9 0;2 , 3, : 3 4 9 3; 4 , 3C x y I R C x y I R            – Nhận xét :  1 2 19 4 13 3 3 6I I C       không cắt  2C – Gọi d : ax+by+c =0 ( 2 2 0a b  ) là tiếp tuyến chung , thế thì :    1 1 2 2, , ,d I d R d I d R      2 2 2 2 2 2 2 2 2 3 1 3 4 22 3 4 2 3 4 3 4 23 4 3 2 b c a b c b cb c a b ca b b c a b c a b c b ca b c a b a b a b                                 2 3 2 2 0 a b a b c       . Mặt khác từ (1) :    2 2 2 2 9b c a b    – Trường hợp : a=2b thay vào (1) :       2 2 2 2 2 2 2 2 2 3 5 4 2 9 4 41 4 0. ‘ 4 41 45 2 3 5 4 b b c b b c b b b bc c c c c c b                     – Do đó ta có hai đường thẳng cần tìm :        1 2 3 5 2 3 5 : 1 0 2 2 3 5 2 3 5 4 0 2 4 d x y x y                   1 2 3 5 2 3 5 : 1 0 2 2 3 5 2 3 5 4 0 2 4 d x y x y            – Trường hợp : 2 3 2 b a c   , thay vào (1) : 2 2 2 2 2 3 2 2 3 2 b a b b a a b a b           2 2 2 2 0, 20 2 2 3 4 0 4 4 , 6 3 3 6 a b a cb c b a a b b ab a a a b a c b c                           – Vậy có 2 đường thẳng : 3 :2 1 0d x   , 4 :6 8 1 0d x y   Bài 32 Trong hệ tọa độ Oxy, hãy viết phương trình hyperbol (H) dạng chính tắc biết rằng (H) tiếp xúc với đường thẳng : 2 0d x y   tại điểm A có hoành độ bằng 4. Hướng dẫn:- Do A thuộc d : A(4;2)
    8. 13. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 13 Jun . 17 – Giả sử (H) :       2 2 2 2 2 2 16 4 1 * 1 1 x y A H a b a b        – Mặt khác do d tiếp xúc với (H) thì hệ sau có 12 nghiệm bằng nhau :    2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 4 4 02 2 2 2 b a x a x a a bb x a y a b b x a x a b y x y x y x                              4 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 ‘ 4 4 4 4 0 4a a b a a a b a b a b a b a b b a a b                – Kết hợp với (1) :   2 2 2 2 4 2 2 2 2 2 2 2 2 2 16 4 8 16 0 4 : 1 8 44 4 8 b a a b b b b x y H a b a b a                           Bài 33 Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Dễ nhận thấy B là giao của BD với AB cho nên tọa dộ B là nghiệm của hệ : 2 1 0 21 13 ; 7 14 0 5 5 x y B x y             – Đường thẳng (BC) qua B(7;3) và vuông góc với (AB) cho nên có véc tơ chỉ phương:     21 5 1; 2 : 13 2 5 x t u BC y t             – Ta có :    , 2 2 2 ,AC BD BIC ABD AB BD       – (AB) có  1 1; 2n    , (BD) có   1 2 2 1 2 n . 1 14 15 3 1; 7 os = 5 50 5 10 10 n n c n n              – Gọi (AC) có     2 2 2 a-7b 9 4 , os AC,BD os2 = 2cos 1 2 1 10 550 n a b c c a b                 – Do đó :    22 2 2 2 2 2 5 7 4 50 7 32 31 14 17 0a b a b a b a b a ab b            – Suy ra :         17 17 : 2 1 0 17 31 3 0 31 31 : 2 1 0 3 0 a b AC x y x y a b AC x y x y                         – (AC) cắt (BC) tại C 21 5 13 7 14 5 2 ; 5 15 3 3 3 0 x t y t t C x y                       – (AC) cắt (AB) tại A :   2 1 0 7 7;4 3 0 4 x y x A x y y               – (AD) vuông góc với (AB) đồng thời qua A(7;4) suy ra (AD) : 7 4 2 x t y t     
    9. 14. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 14 Jun . 17 – (AD) cắt (BD) tại D : 7 7 98 46 4 2 ; 15 15 15 7 14 0 x t y t t D x y                  – Trường hợp (AC) : 17x-31y-3=0 …..làm tương tự . Bài 34 Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG Hướng dẫn::- B thuộc d suy ra B : 5 x t y t      , C thuộc d’ cho nên C: 7 2x m y m     . – Theo tính chất trọng tâm :  2 9 2 2, 0 3 3 G G t m m t x y          – Ta có hệ : 2 1 2 3 1 m t m t m t             – Vậy : B(-1;-4) và C(5;1) . Đường thẳng (BG) qua G(2;0) có véc tơ chỉ phương  3;4u   , cho nên (BG):   20 15 82 13 4 3 8 0 ; 3 4 5 5 x y x y d C BG R            – Vậy đường tròn có tâm C(5;1) và có bán kính R=       2 213 169 : 5 1 5 25 C x y     Bài 35Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1 Hướng dẫn:- Đường (AB) cắt (BC) tại B 2 5 1 0 12 23 0 x y x y        Suy ra : B(2;-1). . (AB) có hệ số góc k=12, đường thẳng (BC) có hệ số góc k’= 2 5 , do đó ta có : 2 12 5tan 2 2 1 12. 5 B     . Gọi (AC) có hệ số góc là m thì ta có : 2 2 55tan 2 5 21 5 m m C m m      . Vì tam giác ABC cân tại A cho nên tanB=tanC, hay ta có : 8 2 5 4 102 5 2 2 5 2 2 5 9 2 5 4 105 2 12 m m mm m m m mm m                    – Trường hợp :     9 9 : 3 1 9 8 35 0 8 8 m AC y x x y           – Trường hợp : m=12 suy ra (AC): y=12(x-3)+1 hay (AC): 12x-y-25=0 ( loại vì nó //AB ). – Vậy (AC) : 9x+8y-35=0 . Bài 36 Viết phương trình tiếp tuyến chung của hai đường tròn : A(2;3) B C x+y+5=0 x+2y-7=0 G(2;0) M A B C 2x-5y+1=0 M(3;1) H 12x-y-23=0
    10. 15. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 15 Jun . 17 B(2;-1) A C x+2y-5=0 3x-4y+27=0 H K (C1) : (x – 5)2 + (y + 12)2 = 225 và (C2) : (x – 1)2 + ( y – 2)2 = 25 Hướng dẫn:- Ta có (C) với tâm I(5;-12) ,R=15. (C’) có J(1;2) và R’=5. Gọi d là tiếp tuyến chung có phương trình : ax+by+c=0 ( 2 2 0a b  ). – Khi đó ta có :        2 2 2 2 5 12 2 , 15 1 , , 5 2 a b c a b c h I d h J d a b a b           – Từ (1) và (2) suy ra : 5 12 3 6 3 5 12 3 2 5 12 3 6 3 a b c a b c a b c a b c a b c a b c                   9 3 2 2 a b c a b c        . Thay vào (1) : 2 2 2 5a b c a b    ta có hai trường hợp : – Trường hợp : c=a-9b thay vào (1) :    2 2 2 2 2 2 7 25 21 28 24 0a b a b a ab b       Suy ra : 14 10 7 14 10 7 175 10 7 : 0 21 21 21 14 10 7 14 10 7 175 10 7 : 0 21 21 21 a d x y a d x y                               – Trường hợp :      2 2 2 2 23 2 1 : 7 2 100 96 28 51 0 2 c a b b a a b a ab b           . Vô nghiệm . ( Phù hợp vì : 16 196 212 ‘ 5 15 20 400IJ R R         . Hai đường tròn cắt nhau ) . Bài 37. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : 2 2 x y 2x 8y 8 0     . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. Hướng dẫn:Đường thẳng d’ song song với d : 3x+y+m=0 – IH là khoảng cách từ I đến d’ : 3 4 1 5 5 m m IH       – Xét tam giác vuông IHB : 2 2 2 25 9 16 4 AB IH IB             2 19 ‘:3 19 01 16 1 20 21 ‘:3 21 025 m d x ym m m d x y                    Bài 38.Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y- 5=0 Hướng dẫn:- Đường thẳng (BC) qua B(2;-1) và vuông góc với (AH) suy ra (BC): 2 3 1 4 x t y t       , hay :   2 1 4 3 7 0 4;3 3 4 x y x y n             – (BC) cắt (CK) tại C :   2 3 1 4 1 1;3 2 5 0 x t y t t C x y                 – (AC) qua C(-1;3) có véc tơ pháp tuyến  ;n a b  Suy ra (AC): a(x+1)+b(y-3)=0 (*). Gọi 4 6 10 2 os = 5 16 9 5 5 5 KCB KCA c          
    11. 16. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 16 Jun . 17 – Tương tự :    2 2 2 2 2 2 2 a+2b a+2b 2 os = 2 4 55 5 c a b a b a b a b                2 0 3 0 3 0 3 4 0 4 4 1 3 0 4 3 5 0 3 3 a b y y a ab b a x y x y                        – (AC) cắt (AH) tại A :  1 2 3 3 0 5 3 4 27 0 31 58231 5;3 , ; 25 254 3 5 0 25 3 4 27 0 582 25 y y x x y A Ax x y x y y                                – Lập (AB) qua B(2;-1) và 2 điểm A tìm được ở trên . ( học sinh tự lập ). Bài 39.Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuôngtại A, phương trình đường thẳng BC là : 3 x – y – 3 = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . Hướng dẫn:- Đường thẳng (BC) cắt Ox tại B : Cho y=0 suy ra x=1 , B(1;0) . Gọi A(a;0) thuộc Ox là đỉnh của góc vuông ( a khác 1 ).. Đường thẳng x=a cắt (BC) tại C :   ; 3 1a a  . – Độ dài các cạnh : 2 2 2 1 , 3 1 2 1AB a AC a BC AB AC BC a          – Chu vi tam giác : 2p=    3 3 1 1 3 1 2 1 3 3 1 2 a a a a a p             – Ta có : S=pr suy ra p= S r .(*) Nhưng S=   21 1 3 . 1 3 1 1 2 2 2 AB AC a a a     . Cho nên (*) trở thành :      2 3 2 31 3 3 3 1 1 1 1 2 3 1 2 4 1 2 3 a a a a a                 – Trọng tâm G :       1 2 3 2 3 12 1 7 4 3 3 7 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                  2 2 1 2 3 12 1 1 4 3 3 1 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                 Bài 40.Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : 012422  yxyx và đường thẳng d : 01  yx . Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến Hướng dẫn:
    12. 17. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 17 Jun . 17 – M thuộc d suy ra M(t;-1-t). . Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông ( A,B là 2 tiếp điểm ). Do đó AB=MI= IA 2 =R 2 = 6 2 2 3 . – Ta có :     2 2 2 2 2 2 8 2 3MI t t t       – Do đó :     1 2 2 2 2 2; 2 1 2 8 12 2 2 2; 2 1 t M t t t M                 . * Chú ý : Ta còn cách khác – Gọi d’ là đường thẳng qua M có hệ số góc k suy ra d’ có phương trình : y=k(x-t)-t-1, hay : kx-y-kt-t-1=0 (1) . – Nếu d’ là tiếp tuyến của (C) kẻ từ M thì d(I;d’)=R 2 2 2 6 1 k kt t k                  2 2 2 2 2 2 2 6 1 4 2 2 2 2 4 2 0t k t k t t k t t k t t                  – Từ giả thiết ta có điều kiện :      2 2 2 2 2 2 4 2 0 ‘ 4 2 4 2 4 0 4 2 1 4 2 t t t t t t t t t t t                         –   1 22 2 1 2 2 1 2 2 6 1 ‘ 19 0 2 ;2 12 t k k t t t k k M k kt                         Bài 41.Trong mặt phẳng với hệ tọa độ Oxy. Cho elip (E) : 044 22  yx .Tìm những điểm N trên elip (E) sao cho : 0 21 60ˆ FNF ( F1 , F2 là hai tiêu điểm của elip (E) ) Hướng dẫn:: – (E) : 2 2 2 2 2 1 4, 1 3 3 4 x y a b c c         – Gọi     2 2 0 0 0 0 1 0 2 0 1 2 4 4 3 3 ; 2 ; 2 2 2 2 3 x y N x y E MF x MF x F F                . Xét tam giác 1 2FMF theo hệ thức hàm số cos :   2 2 2 0 1 2 1 2 1 22 os60F F MF MF MFMF c      2 2 2 0 0 0 0 3 3 3 3 2 3 2 2 2 2 2 2 2 2 x x x x                                   0 0 2 2 2 2 2 0 0 0 0 0 00 4 2 1 3 3 9 32 13 3 12 8 4 8 12 4 4 9 94 2 33 x y x x x x y yx                             M x+y+1=0 A B I(2;1)
    13. 18. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 18 Jun . 17 – Như vậy ta tìm được 4 điểm : 1 2 3 4 4 2 1 4 2 1 4 2 1 4 2 1 ; , ; , ; , ; 3 3 3 3 3 3 3 3 N N N N                                  Bài 42.Trong mă ̣t phẳng to ̣a đô ̣Oxy cho điểm A(1;1) và đường thẳng  : 2x + 3y + 4 =0 Tìm tọa độ điểm B thuộc đường thẳng  sao cho đường thẳng AB và  hợp với nhau góc 450 . Hướng dẫn:- Gọi d là đường thẳng qua A(1;1) có véc tơ pháp tuyến  ;n a b  thì d có phương trình dạng : a(x-1)+b(y-1)=0 (*). Ta có  2;3n   . – Theo giả thiết :      20 2 2 2 2 2 3 1 os d, os45 2 2 3 13 213 a b c c a b a b a b                   2 2 1 1 : 1 1 0 5 4 0 5 55 24 5 0 5 :5 1 1 0 5 6 0 a b d x y x y a ab b a b d x y x y                             – Vậy B là giao của d với  cho nên : 1 1 2 2 5 4 0 5 6 032 4 22 32 ; , : ; 2 3 4 0 2 3 4 013 13 13 13 x y x y B B B B x y x y                             Bài 43.Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng 052:1  yxd . d2: 3x +6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. Hướng dẫn:: – Trước hết lập phương trình 2 đường phân giác tạo bởi 2 đường thẳng cắt nhau : 3 6 7 2 5 9 3 8 03 5 5 3 6 7 2 5 3 9 22 0 3 5 5 x y x y x y x y x y x y                     – Lập đường thẳng 1 qua P(2;-1) và vuông góc với tiếp tuyến : 9x+3y+8=0 . 1 2 1 : 3 5 0 9 3 x y x y          – Lập 2 qua P(2;-1) và vuông góc với : 3x-9y+22=0 2 2 1 : 3 5 0 3 9 x y x y           Bài 44.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1 916 22  yx . Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). Hướng dẫn:: – (H) có    2 2 2 1 216, 9 25 5 5;0 , 5;0a b c c F F       . Và hình chữ nhật cơ sở của (H) có các đỉnh :        4; 3 , 4;3 , 4; 3 , 4;3    . – Giả sử (E) có : 2 2 2 2 1 x y a b   . Nếu (E) có tiêu điểm trùng với tiêu điểm của (H) thì ta có phương trình :  2 2 2 25 1c a b   – (E) đi qua các điểm có hoành độ 2 16x  và tung độ  2 2 2 16 9 9 1 2y a b     – Từ (1) và (2) suy ra :   2 2 2 2 40, 15 : 1 40 15 x y a b E     Bài 45.Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: 2 2 4 3 4 0x y x    Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A
    14. 19. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 19 Jun . 17 Hướng dẫn:- (C) có I( 2 3;0 ), R= 4 . Gọi J là tâm đường tròn cần tìm : J(a;b)       2 2 ‘ : 4C x a y b     -Do (C) và (‘) tiếp xúc ngoài với nhau cho nên khoảng cách IJ =R+R’   2 2 2 2 2 3 4 2 6 4 3 28a b a a b          – Vì A(0;2) là tiếp điểm cho nên :       2 2 0 2 4 2a b    – Do đó ta có hệ :     2 2 2 2 2 222 2 3 36 4 3 24 4 02 4 a b a a b a b ba b                  – Giải hệ tìm được : b=3 và a=       2 2 3 ‘ : 3 3 4C x y     . * Chú ý : Ta có cách giải khác . – Gọi H là hình chiếu vuông góc của J trên Ox suy ra OH bằng a và JH bằng b – Xét các tam giác đồng dạng : IOA và IHJ suy ra : 4 2 3 2 IJ 6 2 3 IA IO OA IH HJ ba       – Từ tỷ số trên ta tìm được : b=3 và a= 3 . Bài 46.Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Hình vẽ : ( Như bài 12 ). – Tìm tọa độ B là nghiệm của hệ :   2 1 0 7;3 7 14 0 x y B x y        . – Đường thẳng (BC) qua B(7;3) và       7 1; 2 : 3 2 BC x t AB u BC y t            1 2 17 0 2 BCx y k       . Mặt khác : 1 1 1 1 17 2, tan 1 17 2 31 7 2 BD ABk k         – Gọi (AC) có hệ số góc là k 2 1 2 7 1 2tan 37 3tan 2 17 1 tan 41 1 7 9 k k k k               – Do đó : 17 28 4 3 21 4 7 1 3 7 31 28 4 3 21 1 k k k k k k k k                 – Trường hợp : k=1 suy ra (AC) : y=(x-2)+1 , hay : x-y-1=0 . – C là giao của (BC) với (AC) :   7 3 2 1, 6;5 1 0 x t y t t C x y              – A là giao của (AC) với (AB) :   7 3 2 0, 1;0 2 1 0 x t y t t A x y             – (AD) //(BC) suy ra (AD) có dạng : 2x+y+m=0 (*) , do qua A(1;0) : m= -2 . Cho nên (AD) có phương trình : 2x+y-2=0 . I(-2 2 ;0) A(0;2) y x
    15. 20. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 20 Jun . 17 – D là giao của (AD) với (BD) :   2 2 0 0;2 7 14 0 x y D x y        – Trường hợp : k=- 17 31 cách giải tương tự ( Học sinh tự làm ). Bài 47. Trong mp (Oxy) cho đường thẳng () có phương trình: x – 2y – 2 = 0 và hai điểm A (-1;2); B (3;4). Tìm điểm M() sao cho 2MA2 + MB2 có giá trị nhỏ nhất Hướng dẫn:- M thuộc  suy ra M(2t+2;t ) – Ta có :     2 22 2 2 2 2 3 2 5 8 13 2 10 16 26MA t t t t MA t t           Tương tự :     2 22 2 2 1 4 5 12 17MB t t t t       – Do dó : f(t)=  2 2 15 4 43 ‘ 30 4 0 15 t t f t t t         . Lập bảng biến thiên suy ra min f(t) = 641 15 đạt được tại 2 26 2 ; 15 15 15 t M          Bài chúng tôi đường tròn (C): x2 + y2 – 2x – 6y + 6 = 0 và điểm M (2;4) Viết phương trình đường thẳng đi qua M cắt đường tròn tại 2 điểm A và B, sao cho M là trung điểm của AB Hướng dẫn:- Đường tròn (C) :      2 2 /( )1 3 4 1;3 , 2, 1 1 4 2 0M Cx y I R P M             nằm trong hình tròn (C) . – Gọi d là đường thẳng qua M(2;4) có véc tơ chỉ phương   2 ; : 4 x at u a b d y bt         – Nếu d cắt (C) tại A,B thì :           2 2 2 2 2 1 1 4 2 2 0 1at bt a b t a b t          ( có 2 nghiệm t ) . Vì vậy điều kiện :       2 2 2 2 2 ‘ 2 3 2 3 0 *a b a b a ab b         – Gọi    1 1 2 22 ;4 , 2 ;4A at bt B at bt     M là trung điểm AB thì ta có hệ :         1 2 1 2 1 2 1 2 1 2 4 4 0 0 8 8 0 a t t a t t t t b t t b t t                     . Thay vào (1) khi áp dụng vi ét ta được :   1 2 2 2 2 2 4 0 0 : : 6 0 1 1 a b x y t t a b a b d d x y a b                       Bài 49.Viết phương trình các tiếp tuyến của e líp (E): 2 2 1 16 9 x y   , biết tiếp tuyến đi qua điểmA(4;3) Hướng dẫn:- Giả sử đường thẳng d có véc tơ pháp tuyến  ;n a b  qua A(4;3) thì d có phương trình là :a(x-4)+b(y-3)=0 (*) , hay : ax+by-4a-3b (1) . – Để d là tiếp tuyến của (E) thì điều kiện cần và đủ là :   22 2 .16 .9 4 3a b a b   2 2 2 2 0 : 3 0 16 9 16 24 9 24 0 0 : 4 0 a d y a b a ab b ab b d x                  Bài 50.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 2my + m2 – 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng  cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. Hướng dẫn:- (C) :     2 2 1 25 (1; ), 5x y m I m R      .
    16. 21. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 21 Jun . 17 – Nếu d : mx +4y=0 cắt (C) tại 2 điểm A,B thì   2 2 2 2 4 16 4 2 24 0 1 16 4 m y x m m x x m                     – Điều kiện : 2 ‘ 25 0m m R      . Khi đó gọi 1 1 2 2; , ; 4 4 m m A x x B x x                  2 2 2 2 2 2 1 2 1 2 1 2 16 25 8 16 4 16 m m m AB x x x x x x m            – Khoảng cách từ I đến d = 2 2 4 5 16 16 m m m m m     – Từ giả thiết : 2 2 22 2 51 1 25 25 . .8 . 4 5 12 2 2 1616 16 mm m S AB d m mm m             2 22 2 2 2 25 5 3 25 25 9 16 16 m m m m m m         – Ta có một phương trình trùng phương , học sinh giải tiếp . Bài 51.Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC Hướng dẫn: – (AB) cắt (AC) tại A :   2 0 3;1 2 5 0 x y A x y         – B nằm trên (AB) suy ra B(t; t-2 ), C nằm trên (AC) suy ra C(5-2m;m) – Theo tính chất trọng tâm :     2 8 3 2 1;22 13 1 7 5 5;3 2 3 G G t m x m Ct m t m t m t B y                       Bài 52.Viết phương trình đường tròn đi qua hai điểm A(2; 5), B(4;1) và tiếp xúc với đường thẳng có phương trình 3x – y + 9 = 0. Hướng dẫn: Gọi M là trung điểm AB suy ra M(3;3 ) . d’ là đường trung trực của AB thì d’ có phương trình : 1.(x-3)- 2(y-3)=0 , hay : x-2y+3=0 . – Tâm I của (C) nằm trên đường thẳng d’ cho nên I(2t-3;t) (*) – Nếu (C) tiếp xúc với d thì    3 2 3 9 5 10 , 210 10 t t t h I d R t R         . (1) – Mặt khác : R=IA=     2 2 5 2 5t t   . (2) . – Thay (2) vào (1) :      2 2 2 210 5 2 5 4 5 30 50 10 2 t t t t t t        2 6 34 12 2 0 6 34 t t t t            . Thay các giá trị t vào (*) và (1) ta tìm được tọa độ tâm I và bán kính R của (C) . * Chú ý : Ta có thể sử dụng phương trình (C) : 2 2 2 2 0x y ax by c     ( có 3 ẩn a,b,c) – Cho qua A,B ta tạo ra 2 phương trình . Còn phương trình thứ 3 sử dụng điều kiện tiếp xúc của (C) và d : khoảng cách từ tâm tới d bằng bán kính R .
    17. 22. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 22 Jun . 17 Bài chúng tôi đường tròn (C): x2 + y2 – 2x + 4y + 2 = 0. Viết phương trình đường tròn (C’) tâm M(5, 1) biết (C’) ắt (C) tại các điểm A, B sao cho 3AB . Hướng dẫn:- Đường tròn (C) :       2 2 1 2 3 1; 2 , 3x y I R       . – Gọi H là giao của AB với (IM). Do đường tròn (C’) tâm M có bán kính R’ = MA . Nếu AB= 3 IA R  , thì tam giác IAB là tam giác đều , cho nên IH= 3. 3 3 2 2  ( đường cao tam giác đều ) . Mặt khác : IM=5 suy ra HM= 3 7 5 2 2   . – Trong tam giác vuông HAM ta có 2 2 2 249 3 13 ‘ 4 4 4 AB MA IH R      – Vậy (C’) :     2 2 5 1 13x y    . Bài 54.Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®-êng trßn (C) cã ph-¬ng tr×nh (x-1)2 + (y+2)2 = 9 vµ ®-êng th¼ng d: x + y + m = 0. T×m m ®Ó trªn ®-êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®-îc hai tiÕp tuyÕn AB, AC tíi ®-êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu”ng. Hướng dẫn: – (C) có I(1;-2) và bán kính R=3 . Nếu tam giác ABC vuông góc tại A ( có nghĩa là từ A kẻ được 2 tiếp tuyến tới (C) và 2 tiếp tuyến vuông góc với nhau ) khi đó ABIC là hình vuông . Theo tính chất hình vuông ta có IA= IB 2 (1) . – Nếu A nằm trên d thì A( t;-m-t ) suy ra :     2 2 1 2IA t t m     . Thay vào (1) :     2 2 1 2 3 2t t m       2 2 2 2 1 4 13 0t m t m m       (2). Để trên d có đúng 1 điểm A thì (2) có đúng 1 nghiệm t , từ đó ta có điều kiện :     22 10 25 0 5 0 5m m m m             .Khi đó (2) có nghiệm kép là :  1 2 0 1 5 1 3 3;8 2 2 m t t t A            Bài 55.Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x – 3y – 12 = 0 và (d2): 4x + 3y – 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. Hướng dẫn:- Gọi A là giao của  1 2 4 3 12 0 , : 3;0 Ox 4 3 12 0 x y d d A A x y          – Vì (BC) thuộc Oy cho nên gọi B là giao của 1d với Oy : cho x=0 suy ra y=-4 , B(0;-4) và C là giao của 2d với Oy : C(0;4 ) . Chứng tỏ B,C đối xứng nhau qua Ox , mặt khác A nằm trên Ox vì vậy tam giác ABC là tam giác cân đỉnh A . Do đó tâm I đường tròn nội tiếp tam giác thuộc Ox suy ra I(a;0). – Theo tính chất phân giác trong : 5 5 4 9 4 4 4 IA AC IA IO OA IO AO IO IO         4 4.3 4 9 9 3 OA IO    . Có nghĩa là I( 4 ;0 3 ) I M A B H I(1;-2) B C A x+y+m=0
    18. 23. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 23 Jun . 17 – Tính r bằng cách :    5 8 51 1 15 1 1 18 6 . .5.3 2 2 2 2 2 15 5 AB BC CA S BC OA r r r             . Bài 56.Trong mặt phẳng toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : :3 4 4 0x y    . Tìm trên  hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15 Hướng dẫn:- Nhận xét I thuộc  , suy ra A thuộc  : A(4t;1+3t) . Nếu B đối xứng với A qua I thì B có tọa độ B(4-4t;4+3t)     2 2 16 1 2 9 1 2 51 2AB t t t       – Khoảng cách từ C(2;-5) đến  bằng chiều cao của tam giác ABC : 6 20 4 6 5     – Từ giả thiết :         0 0;1 , 4;41 1 . 5.1 2 .6 15 1 2 1 2 2 1 4;4 , 0;1 t A B S AB h t t t A B              Bài 57.Trong mặt phẳng với hệ toạ độ Oxy cho elíp 2 2 ( ): 1 9 4 x y E   và hai điểm A(3;-2) , B(-3;2) Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. Hướng dẫn:- A,B có hoành độ là hoành độ của 2 đỉnh của 2 bán trục lớn của (E) , chúng nằm trên đường thẳng y-2=0 . C có hoành độ và tung độ dương thì C nằm trên cung phần tư thứ nhất – Tam giác ABC có AB=6 cố định . Vì thế tam giác có diện tích lớn nhất khi khoảng cách từ C đến AB lớn nhất . – Dễ nhận thấy C trùng với đỉnh của bán trục lớn (3;0) Bài 58.Trong mÆt ph¼ng Oxy cho tam gi¸c ABC biÕt A(2; – 3), B(3; – 2), cã diÖn tÝch b”ng 3 2 vµ träng t©m thuéc ®-êng th¼ng  : 3x – y – 8 = 0. T×m täa ®é ®Ønh C. Hướng dẫn:- Do G thuộc  suy ra G(t;3t-8). (AB) qua A(2;-3) có véc tơ chỉ phương  1;1u AB    , cho nên (AB) : 2 3 5 0 1 1 x y x y        . Gọi M là trung điểm của AB : M 5 5 ; 2 2       . – Ta có : 5 5 5 11 ; 3 8 ; 3 2 2 2 2 GM t t t t                     . Giả sử C 0 0;x y , theo tính chất trọng tâm ta có :    0 0 0 0 5 2 5 22 2 2 5;9 19 1 9 1911 3 8 2 3 2 x t t x t GC GM C t t y t y t t                                    – Ngoài ra ta còn có : AB= 2 ,      3 2 5 9 19 8 4 3 , 10 10 t t t h C         – Theo giả thiết :   4 31 1 3 . , 2 2 4 3 3 10 2 2 210 t S AB h C t           2 2 4 3 5 7 6 5 ; 7 9 5 3 3 2 4 3 90 9 24 29 0 4 3 5 6 5 7 ;9 5 7 3 3 t C t t t t C                                    Bài 59.Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 1 ( ;0) 2 I
    19. 24. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 24 Jun . 17 Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó Hướng dẫn:- Do A thuộc (AB) suy ra A(2t-2;t) ( do A có hoành độ âm cho nên t<1) – Do ABCD là hình chữ nhật suy ra C đối xứng với A qua I : C 3 2 ;t t  . – Gọi d’ là đường thẳng qua I và vuông góc với (AB), cắt (AB) tại H thì : 1 ‘: 2 2 x t d y t        , và H có tọa độ là H 0;1 . Mặt khác B đối xứng với A qua H suy ra B 2 2 ;2t t  . – Từ giả thiết : AB=2AD suy ra AH=AD , hay AH=2IH     2 2 1 2 2 1 2 1 4 t t        22 1 1 05 5 10 5 4. 1 1 1 1 2 14 t t t t t t t                    – Vậy khi t =         1 2;0 , 2;2 , 3;0 , 1; 2 2 A B C D    . * Chú ý : Ta còn có cách giải khác nhanh hơn – Tính   1 0 2 52 ; 25 h I AB     , suy ra AD=2 h(I,AB)= 5 – Mặt khác :     2 2 2 2 2 2 22 5 25 5 4 4 4 4 AB AD IA IH IH IH AD         IA=IB = 5 2 -Do đó A,B là giao của (C) tâm I bán kính IA cắt (AB) . Vậy A,B có tọa độ là nghiệm của hệ :    2 2 2 2 2 0 2;0 , 2;21 5 2 2 x y A B x y                    (Do A có hoành độ âm – Theo tính chất hình chữ nhật suy ra tọa độ của các đỉnh còn lại : C(3;0) và D(-1;-2) Bài 60.Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao : 1 0CH x y   , phân giác trong :2 5 0BN x y   .Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC Hướng dẫn:- Đường (AB) qua A(1;-2) và vuông góc với (CH) suy ra (AB): 1 2 x t y t       . – (AB) cắt (BN) tại B: 1 2 5 2 5 0 x t y t t x y               Do đó B(-4;3).Ta có : 1 2 1 1, 2 tan 1 2 3 AB BNk k            – Gọi A’ đối xứng với A qua phân giác (BN) thì A’ nằm trên (AB). Khi đó A’ nằm trên d vuông góc với (BN) 1 2 : 2 x t d y t        C H B N A(1;-2) x-y+1=0 2x+y+5=0
    20. 25. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 25 Jun . 17 – d cắt (BN) tại H :   1 2 : 2 1 1; 3 2 5 0 x t H y t t H x y                  . – A’ đối xứng với A qua H suy ra A'(-3;-4) . (BC) qua B,A’ suy ra :  1; 7u      4 : 3 7 x t BC y t        . (BC) cắt (CH) tại C: 4 3 13 9 3 7 ; 4 4 4 1 0 x t y t t C x y                      – Tính diện tích tam giác ABC : – Ta có :   2 5 1 1 9 9 10 . ( , ) .2 59 2 2 4, 2 2 2 2 ABC AB S AB h C AB h C AB          Bài 61.Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD, có diện tích bằng 12, tâm I là giao điểm của đường thẳng 03:1  yxd và 06:2  yxd . Trung điểm của một cạnh là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Theo giả thiết , tọa độ tâm I 3 0 9 3 ; 6 0 2 2 x y I x y              . Gọi M là trung điểm của AD thì M có tọa độ là giao của : x-y-3=0 với Ox suy ra M(3;0). Nhận xét rằng : IM // AB và DC , nói một cách khác AB và CD nằm trên 2 đường thẳng // với 1d ( có  1; 1n    . -A,D nằm trên đường thẳng d vuông góc với 1d 3 : x t d y t       . Giả sử A  3 ;t t  (1), thì do D đối xứng với A qua M suy ra D(3-t;t) (2) . – C đối xứng với A qua I cho nên C(6-t;3+t) (3) . B đối xứng với D qua I suy ra B( 12+t;3-t).(4) – Gọi J là trung điểm của BC thì J đối xứng với M qua I cho nên J(6;3). Do đó ta có kết quả là : : 3 2MJ AB AD   . Khoảng cách từ A tới 1d :    1 1 2 , 2 , . 2 ABCD t h A d S h A d MJ   12 2 3 2 12 12 12 ABCD tt S t t          . Thay các giá trị của t vào (1),(2),(3),(4) ta tìm được các đỉnh của hình chữ nhật :                 1 3;1 , 4; 1 , 7;2 , 11;4 1 4; 1 , 2;1 , 5;4 , 13;2 t A D C B t A D C B          Bài 62.Trong mặt phẳng với hệ tọa độ Oxy, cho hypebol (H): và điểm M(2; 1). Viết phương trình đường thẳng d đi qua M, biết rằng đường thẳng đó cắt (H) tại hai điểm A, B mà M là trung điểm của AB Hướng dẫn:- Giải sử d có véc tơ chỉ phương  ;u a b  , qua M(2;1) 2 : 1 x at d y bt       – d cắt (H) tại 2 điểm A,B thì A,B có tọa độ :     2 2 2 2 2 2 1 1 1 2 3 1 2 3 x at at bt y bt x y                   2 2 x y 1 2 3  
    21. 26. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 26 Jun . 17         2 2 2 2 2 3 2 2 2 6 3 2 4 3 4 0(1)at bt a b t a b t           – Điều kiện :     2 2 2 2 2 3 2 0 ‘ 4 3 4 3 2 0 a b a b a b            (*). Khi đó  1 12 ;1 ,A at bt  và tọa độ của B :  2 22 ;1B at bt  , suy ra nếu M là trung điểm của AB thì : 4+a  1 2 1 24 0t t t t     – Kết hợp với 2 1 2 1 2 2 22 2 2 3 2 3 4 4 2 3 2 2 3 2 3 t t t t t t a b b a b a             – Áp dụng vi ét cho (1) :   1 2 2 2 4 3 2 1 2 1 0 3 : 3 2 3 b a x y x y t t b a d a b a b a a                – Vậy d : 3(x-2)=(y-1) hay d : 3x-y-5=0 . Bài 63.Trong mặt phẳng Oxy , cho đường thẳng  có phương trình x+2y-3=0 và hai điểm A(1;0),B(3;-4). Hãy tìm trên đường thẳng  một điểm M sao cho : 3MA MB   là nhỏ nhất Hướng dẫn:- D M  3 2 ;M t t   có nên ta có :    2 2; ,3 6 ; 3 12MA t t MB t t        . Suy ra tọa độ của       2 2 3 8 ; 4 14 3 8 4 14MA MB t t MA MB t t             . – Vậy : f(t) =     2 2 2 8 4 14 80 112 196t t t t     . Xét g(t)= 2 80 112 196t t  , tính đạo hàm g'(t)= 160t+112. g'(t)=0 khi 112 51 51 15.169 196 80 80 80 80 t g              – Vậy min 3 196 14MA MB     , đạt được khi t= 51 80  và 131 51 ; 40 80 M        Bài 64.Trong mặt phẳng Oxy , cho hai đường tròn :   2 2 1 : 13C x y  và     2 2 2 : 6 25C x y   cắt nhau tại A(2;3).Viết phương trình đường thẳng đi qua A và cắt    1 2,C C theo hai dây cung có độ dài bằng nhau Hướng dẫn: – Từ giả thiết :        1 2: 0;0 , 13. ; 6;0 , ‘ 5C I R C J R   – Gọi đường thẳng d qua A(2;3) có véc tơ chỉ phương   2 ; : 3 x at u a b d y bt         – d cắt  1C tại A, B :    2 2 2 2 2 2 2 2 2 3 3 2 2 3 0 13 x at a b y bt a b t a b t t a b x y                          2 2 2 2 2 3 3 2 ; b b a a a b B a b a b          . Tương tự d cắt  2C tại A,C thì tọa độ của A,C là nghiệm của hệ :     2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 10 6 2 3 8 3 3 ; 6 25 x at a b a ab b a ab b y bt t C a b a b a b x y                          – Nếu 2 dây cung bằng nhau thì A là trung điểm của A,C . Từ đó ta có phương trình :
    22. 27. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 27 Jun . 17     2 2 2 2 2 2 2 2 2 0 ; : 2 3 310 6 2 4 6 9 0 3 3 ; // ‘ 3;2 2 2 x a d b ab y ta ab b a ab a b a b a b u b b u                              Suy ra : 2 3 : 3 2 x t d y t       . Vậy có 2 đường thẳng : d: x-2=0 và d’: 2x-3y+5=0 Bài 65.Trong mặt phẳng Oxy , cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình x+y+1=0 trung tuyến từ đỉnh C có phương trình : 2x-y-2=0 . Viết phường trình đường tròn ngoại tiếp tam giác ABC Hướng dẫn:- Đường thẳng d qua A(3;0) và vuông góc với (BH) cho nên có véc tơ chỉ phương  1;1u   do đó d : 3x t y t     . Đường thẳng d cắt (CK) tại C :   3 4 1; 4 2 2 0 x t y t t C x y               – Vì K thuộc (CK) : K(t;2t-2) và K là trung điểm của AB cho nên B đối xứng với A qua K suy ra B(2t- 3;4t- 4) . Mặt khác K lại thuộc (BH) cho nên : (2t- 3)+(4t-4)+1=0 suy ra t=1 và tạo độ B(-1;0) . Gọi (C) :  2 2 2 2 2 2 2 0 0x y ax by c a b c R         là đường tròn ngoại tiếp tam giác ABC . Cho (C) qua lần lượt A,B,C ta được hệ : 1 9 6 0 2 4 4 0 0 5 2 8 0 6 a a c a c b a b c c                     – Vậy (C) : 2 21 25 2 4 x y         Bài 66.Trong mặt phẳng Oxy , cho tam giác ABC biết A(1;-1) ,B(2;1), diện tích bằng 11 2 và trọng tâm G thuộc đường thẳng d : 3x+y-4=0 . Tìm tọa độ đỉnh C ? Hướng dẫn:- Nếu G thuộc d thì G(t;4-3t). Gọi C( 0 0; )x y . Theo tính chất trọng tâm : 0 0 0 0 1 2 3 33 12 9 4 3 3 x t x t y y t t             Do đó C(3t-3;12-9t). -Ta có :   2 1 1 ( ): 2 3 0 1 21;2 1 2 5 x y AB x y AB AB                B C K H A(3;0) x+y+1=0 2x-y-2=0
    23. 28. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 28 Jun . 17 – h(C,AB)=    2 3 3 12 9 3 15 21 5 5 t t t      . Do đó :   1 . , 2 ABCS AB h C AB    32 17 2632 ; 15 21 15 211 11 15 5 515 5 15 21 11 202 2 25 4 1;0 15 3 t Ct t t S t t t C                         Bài 67.Trong mặt phẳng Oxy , cho hình vuông có đỉnh (-4;5) và một đường chéo có phương trình : 7x- y+8=0 . Viết phương trình chính tắc các cạnh hình vuông Hướng dẫn:- Gọi A(-4;8) thì đường chéo (BD): 7x-y+8=0. Giả sử B(t;7t+8) thuộc (BD). – Đường chéo (AC) qua A(-4;8) và vuông góc với (BD) cho nên có véc tơ chỉ phương     4 7 4 5 7; 1 : 7 39 0 5 7 1 x t x y u AC x y y t                  . Gọi I là giao của (AC) và (BD) thì tọa độ của I là nghiệm của hệ :   4 7 1 1 9 5 ; 3;4 2 2 2 7 8 0 x t y t t I C x y                     – Từ B(t;7t+8) suy ra :    4;7 3 , 3;7 4BA t t BC t t        . Để là hình vuông thì BA=BC : Và BAvuông góc với BC       2 0 4 3 7 3 7 4 0 50 50 0 1 t t t t t t t t                    0 0;8 1 1;1 t B t B         . Tìm tọa độ của D đối xứng với B qua I         0;8 1;1 1;1 0;8 B D B D       – Từ đó : (AB) qua A(-4;5) có     4 5 4;3 : 4 3 AB x y u AB       (AD) qua A(-4;5) có     4 5 3; 4 : 3 4 AD x y u AB         (BC) qua B(0;8) có     8 3; 4 : 3 4 BC x y u BC        (DC) qua D(-1;1) có     1 1 4;3 : 4 3 DC x y u DC       * Chú ý : Ta còn cách giải khác – (BD) : 7 8y x  , (AC) có hệ số góc 1 7 k   và qua A(-4;5) suy ra (AC): 31 7 7 x y   . -Gọi I là tâm hình vuông :   2 2 3;47 8 31 7 7 A C I A C I I I C C x x x y y y Cy x x y                – Gọi (AD) có véc tơ chỉ phương       0 ; , : 1;7 7 os45u a b BD v a b uv u v c           2 2 7 5a b a b    . Chọn a=1, suy ra     3 3 3 : 4 5 8 4 4 4 b AD y x x      
    24. 29. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 29 Jun . 17 Tương tự :         4 4 1 3 3 7 : 4 5 , : 3 4 3 3 3 4 4 4 AB y x x BC y x x            và đường thẳng (DC):   4 4 3 4 8 3 3 y x x       Bài 68.Trong mặt phẳng với hệ tọa độ Oxy, cho điểm E(-1;0) và đường tròn ( C ): x2 + y2 – 8x – 4y – 16 = 0. Viết phương trình đường thẳng đi qua điểm E cắt ( C ) theo dây cung MN có độ dài ngắn nhất. Hướng dẫn:-         2 2 : 4 2 36 4;2 , 6C x y I R      – Nhận xét : P/(M,C)=1+8-16=-7<0 suy ra E nằm trong (C) – Gọi d là đường thẳng qua E(-1;0) có véc tơ chỉ phương   1 ; : x at u a b d y bt         – Đường thẳng d cắt (C) tại 2 điểm M,N có tọa độ là nghiệm của hệ :        2 2 2 2 2 1 2 5 2 7 0 4 2 36 x at y bt a b t a b t x y                   . (1) – Gọi M(-1+at;bt),N( -1+at’;bt’) với t và t’ là 2 nghiệm của (1). Khi đó độ dài của dây cung MN     2 2 2 22 2 2 2 2 2 2 2 2 2 2 ‘ 2 18 20 11 ‘ ‘ ‘ a ab b a t t b t t t t a b a b a b a b                – 2 2 2 2 18 20 11 18 20 11 2 2 1 1 b b t t ba a t t ab a                            . Xét hàm số f(t)= 2 2 18 20 11 1 t t t    – Tính đạo hàm f'(t) cho bằng 0 , lập bảng biến thiên suy ra GTLN của t , từ đó suy ra t ( tức là suy ra tỷ số a/b ) ). Tuy nhiên cách này dài * Chú ý : Ta sử dụng tính chất dây cung ở lớp 9 : Khoảng cách từ tâm đến dây cung càng nhỏ thì dây cung càng lớn – Gọi H là hình chiếu vuông góc của I trên đường thẳng d bất kỳ qua E(-1;0). Xét tam giác vuông HIE ( I là đỉnh ) ta luôn có : 2 2 2 2 IH IE HE IE IH IE     . Do đó IH lớn nhất khi HE=0 có nghĩa là H trùng với E . Khi đó d cắt (C) theo dây cung nhỏ nhất . Lúc này d là đường thẳng qua E và vuông góc với IE cho nên d có véc tơ pháp tuyến  5;2n IE    , do vậy d: 5(x+1)+2y=0 hay : 5x+2y+5=0 . Bài chúng tôi tam giác ABC cân tại A, biết phương trình đường thẳng AB, BC lần lượt là: x + 2y – 5 = 0 và 3x – y + 7 = 0. Viết phương trình đường thẳng AC, biết rằng AC đi qua điểm F(1; – 3). Hướng dẫn:- Ta thấy B là giao của (AB) và (BC) cho nên tọa độ B là nghiệm của hệ : 9 2 5 0 7 3 7 0 22 7 x x y x y y                9 22 ; 7 7 B         . Đường thẳng d’ qua A vuông góc với (BC) có     1 3; 1 1;3 3 u n k         . (AB) có A B C x+2y-5=0 3x-y+7=0 F(1;-3)
    25. 30. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 30 Jun . 17 1 2 ABk   . Gọi (AC) có hệ số góc là k ta có phương trình : 11 1 1 15 5 33 11 82 3 3 15 5 3 1 1 15 5 3 45 31 1 2 3 3 7 kk k kk k k k k kk k                             – Với k=-     1 1 : 1 3 8 23 0 8 8 AC y x x y         – Với k=     4 4 : 1 3 4 7 25 0 7 7 AC y x x y         Bài 70.Trong mặt phẳng Oxy, hãy xác định tọa độ các đỉnh của tam giác ABC vuông cân tại A. Biết rằng cạnh huyền nằm trên đường thẳng d: x + 7y – 31 = 0, điểm N(7;7) thuộc đường thẳng AC, điểm M(2;-3) thuộc AB và nằm ngoài đoạn AB Hướng dẫn:- Gọi A     0 0 0 0 0 0; 2; 3 , 7; 7x y MA x y NA x y         . – Do A là đỉnh của tam giác vuông cân cho nên AM vuông góc với AN hay ta có :       2 2 0 0 0 0 0 0 0 0. 0 2 7 3 7 0 9 4 7 0MA NA x x y y x y x y                – Do đó A nằm trên đường tròn (C) :     2 2 0 03 2 20x y    – Đường tròn (C) cắt d tại 2 điểm B,C có tọa độ là nghiệm của hệ phương trình :         2 2 2 2 2 31 7 31 73 2 20 50 396 768 028 7 2 207 31 0 x y x yx y y yy yx y                          – Do đó ta tìm được : 198 2 201 99 201 99 201 ; 50 25 25 y y       , tương ứng ta tìm được các giá trị của x : 82 7 201 82 7 201 ; 25 25 x x     . Vậy : 82 7 201 99 201 ; 25 25 A         và tọa độ của điểm 82 7 201 99 201 ; 25 25 A         Bài 71. Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d1 và 2d Hướng dẫn:- Tìm tọa độ A là nghiệm của hệ :   2 5 0 11 11;17 3 2 1 0 17 x y x A x y y                – Nếu C thuộc    1 2; 2 5 , 1 2 ; 1 3d C t t B d B m m        – Theo tính chất trọng tâm của tam giác ABC khi G là trọng tâm thì : 2 10 1 2 133 11 2 3 2 3 2 3 3 t m t m t m t m                13 2 13 2 35 2 13 2 3 2 24 24 t m t m t m m m m                    – Vậy ta tìm được : C(-35;65) và B( 49;-53). A B C G M 2x+y+5=0 3x+2y-1=0
    26. 31. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 31 Jun . 17 Bài 72.Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y – 15 = 0. Tìm tọa độ điểm M trên đường thẳng d: 3x – 22y – 6 = 0, sao cho từ điểm M kẻ được tới (C) hai tiếp tuyến MA, MB (A, B là các tiếp điểm) mà đường thẳng AB đi qua điểm C (0;1). Hướng dẫn:- (C) :     2 2 3 1 25x y    , có I(3;-1) và R=5 . – Gọi    1 1 2 2; , ;A x y B x y là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M . – Gọi M 0 0 0 0; 3 22 6 0 (*)x y d x y     – Hai tiếp tuyến của (C) tại A,B có phương trình là : –        1 13 3 1 1 25 1x x y y      và : –        2 23 3 1 1 25 2x x y y      – Để 2 tiếp tuyến trở thành 2 tiếp tuyến kẻ từ M thì 2 tiếp tuyến phải đi qua M ; –        1 0 1 03 3 1 1 25 3x x y y      và –        2 0 2 03 3 1 1 25 4x x y y      Từ (3) và (4) chứng tỏ (AB) có phương trình là :        0 03 3 1 1 25 5x x y y      – Theo giả thiết thì (AB) qua C(0;1) suy ra :    0 0 0 03 3 2 1 25 3 2 14 0(6)x y x y          – Kết hợp với (*) ta có hệ : 0 0 0 0 0 0 1 3 22 6 0 16 ; 116 3 2 14 0 3 3 y x y M x y x                        Bài 73.Trong mặt phẳng Oxy : Cho hai điểm A(2 ; 1), B( – 1 ; – 3) và hai đường thẳng d1: x + y + 3 = 0; d2 : x – 5y – 16 = 0. Tìm tọa độ các điểm C,D lần lượt thuộc d1 và d2 sao cho tứ giác ABCD là hình bình hành. Hướng dẫn:- Trường hợp : Nếu AB là một đường chéo +/ Gọi I( 1 ; 1 2       , đường thẳng qua I có hệ số góc k suy ra d: y=k(x-1/2)-1 +/ Đường thẳng d cắt 1d tại C     4 1 2 11 2 7 2 3 0 2 1 k x ky k x k yx y k                          4 7 2 ; 2 1 2 1 k k C k k          . Tương tự d cắt 2d tại B : 1 1 2 5 16 0 y k x x y               – Từ đó suy ra tọa độ của B . Để ABCD là hình bình hành thì : AB=CD .Sẽ tìm được k * Cách khác : – Gọi C(t;-t-3) thuộc 1d , tìm B đối xứng với C qua I suy ra D (1-t;t+1) – Để thỏa mãn ABCD là hình bình hành thì D phải thuộc 2d :  1 5 1 16 0t t      Suy ra t=- 10 3 và D 13 7 ; 3 3       và C 10 1 ; 3 3       chúng tôi – Trường hợp AB là một cạnh của hình bình hành . +/ Chọn C (t;-t-3) thuộc 1d và D (5m+16;m) thuộc 2d M A B I(3;-1) H C(0;1) 3x-22y-6=0
    27. 32. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 32 Jun . 17 +/ Để ABCD là hình bình hành thì : AC=BD AB //CD    +/ Ta có :                 2 2 2 2 2 2 2 22 4 5 17 3 2 4 5 17 3 5 16 3 17 7 55 0 3 4 t t m m t t m m m t m t m t                              2 2 2 13 88 89 0 17 55 7 t t m m m t             . Giải hệ này ta tìm được m và t , thay vào tọa độ của C và D Bài 74.Trong mặt phẳng tọa độ độ Oxy, cho tam giác ABC có C(1;2), hai đường cao xuất phát từ A và B lần lượt có phương trình là x + y = 0 và 2x – y + 1 = 0. Tính diện tích tam giác ABC. Hướng dẫn:- (AC) qua C(1;2) và vuông góc với đường cao BK cho nên có :     1 2 2; 1 : 2 5 0 2 1 x y u AC x y             – (AC) cắt (AH) tại A : 3 2 1 0 3 11 55 ; 2 5 0 11 5 5 5 5 x x y A AC x y y                      – (BC) qua C(1;2) và vuông góc với (AH) suy ra     1 1;1 : 2 BC x t u BC y t         – (BC) cắt đường cao (AH) tại B 1 3 1 1 2 ; 2 2 2 0 x t y t t B x y                    – Khoảng cách từ B đến (AC) : 1 1 5 9 1 5 9 92 . 2 5 205 2 5 2 5 S        Bài 75.Trong mặt phẳng Oxy, cho hai điểm 1F ( – 4; 0), 2F ( 4;0) và điểm A(0;3). a) Lập phương trình chính tắc của elip (E) đi qua điểm A và có hai tiêu điểm 1F , 2F . b) Tìm tọa độ của điểm M thuộc (E) sao cho M 1F = 3M 12F Hướng dẫn:- Giả sử (E) : 2 2 2 2 1 x y a b   (1) . Theo giả thiết thì : c=4  2 2 2 16 2c a b    – (E) qua A(0;3) suy ra : 2 2 9 1 9b b    , thay vào (2) ta có   2 2 2 25 : 1 25 9 x y a E    – M thuộc (E)     2 2 0 0 0 0; 1 2 25 9 x y M x y    . Theo tính chất của (E) ta có bán kính qua tiêu 1 0 2 0 1 2 0 0 0 4 4 4 4 25 5 , 5 3 5 3 5 5 5 5 5 8 MF x MF x MF MF x x x                  . Thay vào (2) ta có 2 0 02 551 551 8 8 y y    Bài 76.Trong mp Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y + 6 = 0 và điểm P(1;3). a.Viết phương trình các tiếp tuyến PE, PF của đường tròn (C), với E, F là các tiếp điểm. b.Tính diện tích tam giác PEF.
    28. 33. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 33 Jun . 17 Hướng dẫn:- (C):       2 2 3 1 4 3; 1 , 2x y I R       – Giả sử đường thẳng qua P có véc tơ pháp tuyến      ; : 1 3 0n a b d a x b y      Hay : ax+by-(a+3b)=0 (*). – Để d là tiếp tuyến của (C) thì khoảng cách từ tâm I đến d bằng bán kính : 2 2 2 2 3 3 2 4 2 2 a b a b a b a b a b             2 2 2 2 2 4 3 0a b a b ab b               0 1 0 1 0 4 3 0 4 4 1 3 0 3 4 6 0 3 3 b a x x b a b b a a x a y x y                        -Ta có : PI=2 5 , PE=PF= 2 2 20 4 4PI R    . Tam giác IEP đồng dạng với IHF suy ra : IF 2 5 IF 2 4 5 , IH 2 5 5 5 5 EP IP EP IH EH EH IE          2 8 1 1 8 8 32 2 5 chúng tôi 2 2 55 5 5 5 EPFPH PI IH S         Bài 77.Trong mpOxy, cho 2 đường thẳng d1: 2x + y  1 = 0, d2: 2x  y + 2 = 0. Viết pt đường tròn (C) có tâm nằm trên trục Ox đồng thời tiếp xúc với d1 và d2. Hướng dẫn:- Gọi I(a;0) thuộc Ox . Nếu (C) tiếp xúc với 2 đường thẳng thì :       1 2 1 , , , h I d h I d h I d R        2 1 2 2 1 5 5 2 1 2 5 a a a R           . Từ (1) : a= 1 4 , thay vào (2) : R=   2 25 1 5 : 10 4 100 C x y          Bài 78.Trong mpOxy, cho 2 đường thẳng d1: 2x  3y + 1 = 0, d2: 4x + y  5 = 0. Gọi A là giao điểm của d1 và d2. Tìm điểm B trên d1 và điểm C trên d2 sao cho ABC có trọng tâm G(3; 5). Hướng dẫn:- Tọa độ A là nghiệm của hệ : 2 3 1 0 7 3 ; 4 5 0 8 2 x y A x y             –    1 21 2 ;1 3 , ;5 4B d B t t C d C m m       . Tam giác ABC nhận G(3;5) làm trọng tâm : 7 57 1 2 9 2 8 8 3 15 1 3 5 4 15 3 4 2 2 t m t m t m t m                          I(3;-1)E F P(1;3) O x y H
    29. 34. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 34 Jun . 17 Giải hệ trên suy ra : 31 67 88 ; 5 5 5 207 207 257 ; 40 40 10 t B m C                     Bài chúng tôi đường tròn (C): x2 + y2  2x  4y + 3 = 0. Lập pt đường tròn (C’) đối xứng với (C) qua đường thẳng : x  2 = 0 Hướng dẫn:Ta có (C):       2 2 1 2 2 1;2 , 2x y I R      – Gọi J là tâm của (C’) thì I và J đối xứng nhau qua d : x=2 suy ra J(3;2) và (C) có cùng bán kính R . Vậy (C’):     2 2 3 2 2x y    đối xứng với (C) qua d . Bài 80.Trong mpOxy, cho ABC có trục tâm H 13 13 ; 5 5       , pt các đường thẳng AB và AC lần lượt là: 4x  y  3 = 0, x + y  7 = 0. Viết pt đường thẳng chứa cạnh BC. Hướng dẫn:- Tọa độ A là nghiệm của hệ : 4 3 0 7 0 x y x y        Suy ra : A(2;5).   3 12 ; // 1; 4 5 5 HA u            . Suy ra (AH) có véc tơ chỉ phương  1; 4u   . (BC) vuông góc với (AH) cho nên (BC) có  1; 4n u    suy ra (BC): x- 4y+m=0 (*). – C thuộc (AC) suy ra C(t;7-t ) và   13 22 ; 1;4 5 5 ABCH t t u CH               . Cho nên ta có :   13 22 4 0 5 5;2 5 5 t t t C             . – Vậy (BC) qua C(5;2) có véc tơ pháp tuyến        1; 4 : 5 4 2 0n BC x y        (BC): 4 3 0x y    Bài 81.Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x + y  3 = 0 và 2 điểm A(1; 1), B(3; 4). Tìm tọa độ điểm M thuộc đường thẳng d sao cho khoảng cách từ M đến đường thẳng AB bằng 1. Hướng dẫn:- M thuộc d suy ra M(t;3-t) . Đường thẳng (AB) qua A(1;1) và có véc tơ chỉ phương     1 1 4; 3 : 3 4 4 0 4 3 x y u AB x y             – Theo đầu bài :  3 4 3 4 1 8 5 5 t t t             3 3;0 13 13; 10 t M t M        * Chú ý : Đường thẳng d’ song song với (AB) có dạng : 3x+4y+m=0 . Nếu d’ cách (AB) một khoảng bằng 1 thì h(A,d’)=1 3 4 1 5 m    2 ‘:3 4 2 0 12 ‘:3 4 12 0 m d x y m d x y               . Tìm giao của d’ với d ta tìm được M . Bài 82.Trong mặt phẳng với hệ tọa độ Oxy, cho ABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x  y + 11 = 0, x + y  1 = 0. Tìm tọa độ các đỉnh B, C A(2;5) B C E K H 4x-y-3=0 x+y-7=0
    30. 35. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 35 Jun . 17 Hướng dẫn:Đường thẳng (AC) qua A(4;3) và vuông góc với (BH) suy ra (AC) : 4 3 3 x t y t      (AC) cắt trung tuyến (CM) tại C :   4 3 3 2 6 0 3 5;6 1 0 x t y t t t C x y                  – B thuộc (BH) suy ra B(t;3t+11 ). Do (CM) là trung tuyến cho nên M là trung điểm của AB , đồng thời M thuộc (CM) . 4 3 14 ; 2 2 t t M           4 3 14 1 0 4 2 2 t t M CM t           . Do đó tọa độ của B(-4;-1) và M(0;1 ). Bài 83.Trong mpOxy, cho elip (E): 2 2 1 8 4 x y   và đường thẳng d: x  2 y + 2 = 0. Đường thẳng d cắt elip (E) tại 2 điểm B, C. Tìm điểm A trên elip (E) sao cho ABC có diện tích lớn nhất. Hướng dẫn:-Do đường thẳng d cố định cho nên B,C cố định , có nghĩa là cạnh đáy BC của tam giác ABC cố định . – Diện tích tam giác lớn nhất khi khoảng cách từ A ( trên E) là lớn nhất – Phương trình tham số của (E) :  2 2 sin 2 2 sin ;2cos 2cos x t A t t y t      – Ta có :   2 2 sin 2 2 ost+2 , 3 t c h A d      4sin2 2 sin ost 4 4 3 3 3 xt c          . Dấu đẳng thức chỉ xảy ra khi sin 1 4 x        . sin 1 2 2 2, 2 4 4 2 4 3 2 2 2, 2sin 1 4 2 44 x x k x k x y x k x k x yx                                                         Nhận xét : Thay tọa độ 2 điểm A tìm được ta thấy điểm  2; 2A  thỏa mãn . B H C M A(4;3) 3x-y+11=0 x+y-1=0 2 2-2 2 2 y x O -2 2 x- 2 y+2=0 B CA -2 2 A

    --- Bài cũ hơn ---

  • Phép Quay Và Phép Vị Tự Lớp 11
  • 20 Câu Trắc Nghiệm: Phép Vị Tự Có Đáp Án (Phần 1).
  • Mama 2022 Tại Nhật Và Bộ Sưu Tập Những Khoảnh Khắc “mặn Mà” Của Bts
  • Bts Và Sức Công Phá Không Tưởng Tại Mama 2022
  • Kết Quả Mama 2022 Tại Hồng Kông: Bts Giật Daesang Kép, Twice Khóc Cạn Nước Mắt Khi 3 Năm Liên Tiếp Thắng Giải Daesang Bài Hát Của Năm!
  • Đề Thi Học Kì 1 Toán 10 Có Lời Giải Chi Tiết

    --- Bài mới hơn ---

  • Tất Tần Tật Đáp Án Brain Out Từ Cấp 1 Đến Cấp 225: Bạn Có Đủ Can Đảm Xem Hết
  • Lợi Ích Khi Sử Dụng Dịch Vụ Công Trực Tuyến Mức Độ 3, 4 Trong Giải Quyết Thủ Tục Hành Chính
  • Đáp Án Phần Thi Trắc Nghiệm Thi “tìm Hiểu Dịch Vụ Công Trực Tuyến”.
  • Đáp Án Full Test Lc+Rc Ets 2022
  • Đáp Án Full Test Lc+Rc Ets 2022 Format
  •  

    I, Đề thi học kì 1 toán 10 trường THPT Phúc Trạch

    Cấu trúc đề thi học kì 1 toán 10 môn toán có đáp án được biên tập theo tất cả tự luận gồm 6 bài – Thời gian hoàn thành bài thi là 90 phút. Đề sẽ gồm 2 phần: phần chung dành cho các em học sinh cơ bản, còn phần riêng sẽ dành cho các bạn học sinh nâng cao để thử sức mình với độ khó cao hơn một chút.

    A. Phần chung (8 điểm):

    Câu 1 (2đ). Tìm TXĐ của các hàm số: 

    a)

    b)

    Câu 2 (2đ). Hai bạn Trang và Vân đi chợ sắm Tết. Bạn Trang mua 2kg hạt hướng dương, 3kg hạt dẻ với giá tiền là 70500  đồng. Bạn Vân mua 3kg hạt hướng dương, 2kg hạt dẻ với giá tiền là 67000 đồng. Tính giá tiền mỗi kg hạt hướng dương và mỗi kg hạt dẻ là bao nhiêu?

    Câu 3 (2 điểm). Cho hàm số y=x2-ax+b (1)

    a) Tìm giá trị của a và b để đồ thị hàm số (1) đi qua điểm A(1;0) và cắt trục tung tại điểm (0;1).

    b) Lập bảng biến thiên và vẽ đồ thị hàm số với giá trị a và b tìm được ở câu a.

    Câu 4 (2đ). Trong mặt phẳng với hệ trục toạ độ Oxy cho tam giác ABC với A(1;5),B(0;-2),C(6;0). M là trung điểm của BC.

    a) Chứng minh rằng tam giác ABC cân tại A.

    b) Tính chu vi và diện tích tam giác ABM.

    B. Phần riêng (2 điểm):

    Dành cho chương trình nâng cao:

    Câu 5a (1đ). Giải phương trình:

    Câu 6a (1đ). Cho tam giác ABC cân tại A, AH là đường cao, HD vuông góc với AC     (). Gọi M là trung điểm của HD. Chứng minh rằng AM vuông góc với BD.

    Dành cho chương trình cơ bản:

    Câu 5b (1đ). Giải phương trình:

    Câu 6b (1đ) Cho tứ giác ABCD. M, N lần lượt là trung điểm các cạnh AB và CD. G là trung điểm đoạn thẳng MN. Chứng minh rằng:

    II, Đáp án đề thi học kì 1 toán 10 trường THPT Phúc Trạch

    Sau khi làm hoàn thành đề thi học kì 1 toán 10 của trường THPT Phúc Trạch,  muốn tra cứu đáp số, giải đáp thắc mắc ở những bài tập không làm được, chúng tôi xin đưa ra lời giải tham kèm theo biểu điểm để các em học sinh dò lại và có thể tự chấm điểm cho mình. Qua đó, rút ra kinh nghiệm để làm tốt bài làm thực.

    A. Phần chung (8 điểm)

    Câu 1. (2điểm). Tìm TXĐ của các hàm số:

    a) Điều kiện có nghĩa: 

    .

    TXĐ của hàm số:

    b) Điều kiện có nghĩa: 

    .

    TXĐ của hàm số:

    Nhận xét: Trong các đề thi học kì 1 lớp 10 môn toán thì tìm TXĐ của hàm số là dạng toán chắc chắc xuất hiện nên các em cần phải lưu ý:

    * Hàm số  

    – Chứa căn xác định khi f(x) lớn hơn họặc bằng 0.

    – Dạng xác định khi g(x) khác 0.

    Theo bài ra ta có hpt :

    Giải hệ ta được

    Vậy giá tiền mỗi kg hạt hướng dương là 12000 đồng, mỗi kg hạt dẻ là 15500 đồng

     

    Câu 3 a) Từ điều kiện bài toán ta có hệ:

    b) Toạ độ đỉnh:

    Trục đối xứng là đường thẳng x=1

    Đồ thị cắt trục Oy tại (0;1), tiếp xúc với trục Ox tại (1;0)

    Trong các đề thi học kì 1 toán 10, vẽ hàm số bậc hai cũng là một dạng toán hay gặp nên các em cần ôn kĩ các bước vẽ đồ thị hàm số:

    a) Xác định tọa độ đỉnh    

    b) Vẽ trục đối xứng x=-b/2a

    c) Xác định tọa các giao điểm của parabol với trục tung, trục hoành ( nếu có)

    d) Vẽ parabol

    Câu 4.

    a) 

    ;

    Do đó nên tam giác ABC cân tại A

    b) M là trung điểm BC nên có toạ độ là:M(3;-1)

    Ta có ; ;

    Chu vi tam giác ABM là: 

     

    Tam giác ABC cân tại A và M là trung điểm BC nên , tam giác ABM vuông tại M, 

    do đó diện tích tam giác ABM là: 

     

     

    B. Phần riêng (2đ)

    Phần dành cho nâng cao

    Câu 5a. (1điểm) .

    Điều kiện:

    Đặt , , , phương trình đã cho trở thành:

    .

    Đối chiếu với điều kiện (*) ta có t=2.

    Với t=2 ta có .

    Vậy phương trình đã cho có một nghiệm x=1.

    Nhận xét : Trong đề thi hk1 toán 10 này thì đây là một trong những bài tập khó, nếu bình phương 2 vế thì sẽ xuất hiện bậc 4, học sinh phải tìm hiểu các dạng toán giai pt bằng cách đặt ẩn phụ.

    Câu 6a.  M là trung điểm HD nên ,

    Đồng thời .

    Từ đó:

                             .

    Theo giả thiết: (1); (2)

    (3).

    Trong tam giác vuông AHC, đường cao HD, ta có (4)

    Từ (1), (2), (3) và (4) ta có

     

    Dành cho các lớp cơ bản

    Câu 5b. Điều kiện:

    Với điều kiện (*), bình phương hai vế ta được:

    .

    Đối chiếu điều kiện (*), phương trình có nghiệm x=3

    Câu 6b. Theo giả thiết, M, N lần lượt là trung điểm của AB và CD nên: .

    Vì G là trung điểm của MN nên .

    Từ đó:

     

    --- Bài cũ hơn ---

  • Bài Tập Thực Hành Giáo Dục Công Dân Lớp 8
  • Khoa Kinh Tế Quốc Tế
  • Giải Bài Tập Ôn Tập Chương 2 Toán 12 Đầy Đủ Nhất
  • Tổng Hợp Các Bài Tập Trắc Nghiệm Toán 12 Học Kì 1
  • Giải Vở Bài Tập Toán Lớp 5 Tập 2 Trang 28 Câu 1, 2, 3, Giải Vbt Toán 5 Tập 2 Bài 109: Luyện Tập Chung – Lingocard.vn
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100