Tổng Hợp Các Đề Toán Cao Cấp 2 Có Lời Giải

--- Bài mới hơn ---

  • Đề Thi Hk2 Toán 12
  • Đề Thi Học Sinh Giỏi Toán 12 Có Đáp Án
  • Bài Tập Về Sổ Kế Toán Và Hình Thức Sổ Kế Toán
  • Bài Giải Đề Thi Toán Thpt Quốc Gia 2022
  • Một Số Bài Toán Hình Học Lớp 7 Cực Hay Có Đáp Án
  • TỔNG HỢP ĐỀ TOÁN CAO CẤP 2

    Đề 3 :

    Câu 1: tính gần đúng:

    Câu 2 : Tính tích phân sau:

    Câu 3 .Xét tính phân kì và hội tụ của Câu 4: Giải phương trình vi phân:

    Câu 5: Giải phương

    trình sai phân:

    Đề 4 :

    Câu 1. Tìm cực trị của hàm số:

    Câu 2. tính

    Câu 3 tính tích phân

    Câu 4 : Giải phương

    trình vi phân

    Câu 5: Giải phương trình

    sai phân

    Đề 5:

    Câu 1: Tìm cực trị của hàm

    số: Câu 2: Tính nguyên

    hàm:

    Câu 3: xét tính phân kỳ hội tụ Câu 4:tính vi phân

    Câu 5 : Giải pt sai phân :

    Câu 5: gpt sai phân

    Đề 7

    Câu 1 : Tìm cực trị :

    Câu 2 : Tính tích phân của

    Câu 3 : Xét tính hội tụ phân kì

    của tích phân từ 0 đến 2 của

    Câu 4 : PTVP

    Câu 5 : PTSP Đề 9 :

    Câu 1: tính gần đúng

    Câu 2: tính tích phân

    Câu 3: tích phân Câu 4: vi phân

    Câu 5: sai phân

    Đề 11:

    Câu 1. Tìm cực trị: Câu 2. Tính tích phân:

    Câu 5.Giải ptrình sai phân:

    Đề 14

    Câu 1 : tính gần đúng :

    Câu 2 : tính tích phân :Câu 3 Xác định sự hội tụ phân kì : Câu 4: Tính vi phân

    Câu 5 : Tính sai phân :

    Đề 16 :

    Câu 1 . tính giá trị gần đúng câu 2 tính tích phân

    Câu 3 xét tính hội tụ hay

    phân kì Câu 4 giải

    phương trình vi phân

    Câu 5 giải phương trình

    sai phân

    Đề 18

    Câu 1 : Tính gần đúng Câu 2 : tính tích phân Câu 3 : xét tính hội tụ, phân kỳ Câu 4 : Giải pt vi phân

    Câu 3: xét hội tụ phân kì của

    Câu 4: vi phân

    Câu 5: sai phân

    Đề 22 :

    Câu 1: Tìm cực trị

    Câu 2 : tìm nguyên hàm

    Câu 3 : xét hội tụ phân kỳ

    Câu 4: ptvp

    Câu 5 : pt sai phân

    Đề 23 :

    1 Tìm cực trị :

    2.Tính tích phân

    3.Xét tính hội tụ, phân kỳ 4.Giải phương trình

    5.Giải phương trình

    Câu3.Tích phân

    Câu 4: Giải phương trình vi

    phân

    Câu5: Giải ptrình sai phân:

    Đề 30

    Câu 1: Tính gần đúng

    Câu 2:Tính tích phân

    Câu 3:Xét tính hội tụ phân kì

    của tích phân

    Câu 4:Giải phương trình vi phân: Câu 5:Giải phương trình sai phân:

    Đề 31

    Câu 1 : Tính gần đúng

    Câu 2 : Tính tích phân

    với ;

    Câu 3 : xét tính hội tụ và phân kỳ

    Câu 4 : giải pt vi phân

    Đề 32

    Câu 1 .Tìm miền xđ và

    biểu diễn qua đồ thị Câu 2 .

    Tích phân

    Câu 3 . Xét tính hội tụ hay phân kỳ của tích phân

    Câu 4 . Giải pt vi phân

    Câu 5 . Giải pt sai phân

    Đề khoa A

    Câu 1. tính

    Câu 2. Tích phân

    Câu 3 : Tích phân Câu 4. Tính Vi phân Câu 5 : Giải pt Sai phân

    Đề khoa H

    Bài 1: Tìm cực trị:

    Bài 2 tích phân

    Bài 3 tính hội tụ Bài 4 . gpt vp

    Bài 5 tính sai phân.

    3. xét ht,pk: 4. gpt:

    --- Bài cũ hơn ---

  • Đề Thi Toán Cao Cấp Ueh Có Đáp Án Chi Tiết
  • Tranh Cãi Gay Gắt Bài Toán Lớp 3 Tính Số Lãi Của Bác Nông Dân, Tưởng Đơn Giản Mà Đầy Người Lớn Cũng Sai Be Bét
  • Giải Thích Bài Toán Mua Bò
  • Giải Bài Toán Bằng Logo
  • Top 40 Đề Thi Toán Lớp 1 Có Đáp Án
  • Các Bài Toán Có Lời Giải

    --- Bài mới hơn ---

  • Giải Toán Lớp 6 Bài 5: Phép Cộng Và Phép Nhân
  • Các Dạng Toán Về Phép Cộng Và Phép Nhân
  • Tóm Tắt Kiến Thức Toán Lớp 6 Bài 5: Phép Cộng Vàphép Nhân
  • Đáp Án Sách Mai Lan Hương Lớp 8
  • Đáp Án Sách Mai Lan Hương Lớp 10
  • Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối.

    Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá.

    a. Tính số học sinh mỗi loại của lớp.

    b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp.

    CÁC BÀI TOÁN CÓ LỜI GIẢI – LỚP 6 Bài 1: Lớp 6A có 40 học sinh.Cuối năm số học sinh loại giỏi chiếm 10% tổng số học sinh cả lớp.Số học sinh khá bằng số học sinh loại giỏi. Còn lại là học sinh trung bình. Tính số học sinh mỗi loại? HD: Số học sinh giỏi là: – Số học sinh khá là: – Số học sinh trung bình là: Đáp số: Giỏi: 4 hs Khá: 6 hs Trung Bình: 30 hs Bài 2: Khối 6 của một trường có tổng cộng 90 học sinh. Trong dịp tổng kết cuối năm thống kê được: Số học sinh giỏi bằng số học sinh cả khối, số học sinh khá bằng 40% số học sinh cả khối. Số học sinh trung bình bằng số học sinh cả khối, còn lại là học sinh yếu kém. Tính số học sinh mỗi loại. Số học sinh giỏi của trường là: (học sinh) – Số học sinh khá của trường là: (học sinh) – Số học sinh trung bình của trường là: (học sinh) – Số học sinh yếu của trường là:90 – (15 + 36 + 30) = 9 (học sinh) Bài 3: Ở lớp 6B số HS giỏi học kì I bằng số HS cả lớp. Cuối năm học có thêm 5 HS đạt loại giỏi nên số HS giỏi bằng số HS cả lớp. Tính số HS của lớp 6A? Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối. Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá. a. Tính số học sinh mỗi loại của lớp. b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp. Bài 6: Một đội công nhân sửa chữa một đoạn đường trong ba ngày. Ngày thứ nhất sửa 59 đoạn đường, ngày thứ hai sửa 14 đoạn đường. Ngày thứ ba sửa 7m còn lại. Hỏi đoạn đường cần sửa dài bao nhiêu mét. Bài 7: Lớp 6A có 40 học sinh gồm 3 loại: Giỏi, khá và trung bình. Số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng số học sinh còn lại a) Tính số học sinh giỏi, khá, trung bình của lớp 6A b) Tính tỷ số phần trăm của số học sinh trung bình so với học sinh cả lớp Giải a) – Số học sinh giỏi của lớp 6A là: (học sinh) số học sinh còn lại là 40 – 5 = 35 (học sinh) – Số học sinh trung bình của lớp 6A là: (học sinh) – Số học sinh khá của lớp 6A là: 35 -15 = 10 (học sinh) b) % = 35% Bài 8: Kết quả học lực cuối học kỳ I năm học 2012 – 2013 cuả lớp 6A xếp thành ba loại: Giỏi; Khá; Trung bình. Biết số học sinh khá bằng số học sinh giỏi; số học sinh trung bình bằng số học sinh giỏi. Hỏi lớp 6A có bao nhiêu học sinh; biết rằng lớp 6A có 12 học sinh khá? HD: Số học sinh giỏi của lớp 6A là: (học sinh) Số học sinh trung bình của lớp 6A là: (học sinh) Tổng số học sinh của lớp 6A là: (học sinh) Đáp số: 36 học sinh Bài 9: Biết diện tích của một khu vườn là 250m2. Trên khu vườn đó người ta trồng các loại cây cam, chuối và bưởi. Diện tích trồng cam chiếm 40% diện tích khu vườn. Diện tích trồng chuối bằng diện tích trồng cam. Phần diện tích còn lại là trồng bưởi. Hãy tính: Diện tích trồng mỗi loại cây ; Tỉ số diện tích trồng cam và diện tích trồng bưởi ; Tỉ số phần trăm của diện tích trồng cam và diện tích trồng chuối. Bài 10: Một mãnh vườn hình chữ nhật có chiều rộng là 20 m và chiều dài bằng 1,5 lần chiều rộng . a) Tính diện tích mãnh vườn. b) Người ta lấy một phần đất vườn để trồng cây ăn quả, biết rằng diện tích trồng cây ăn quả là 180m2 . Tính diện tích trồng cây ăn quả. c) Phần diện tích còn lại người ta trồng hoa. Hỏi diện tích trồng hoa chiếm bao nhiêu phần trăm diện tích mãnh vườn. Bài 11: Một trường học có 120 học sinh khối 6 gồm ba lớp : lớp 6A1 chiếm số học sinh khối 6. Số học sinh lớp 6A2 chiếm số học sinh khối 6. Số còn lại là học sinh lớp 6A3 .Tính số học sinh mỗi lớp. Bài 12 : Một lớp học có 44 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh trung bình chiếm số học sinh cả lớp. Số học sinh khá bằng số học sinh còn lại. Tính số học sinh giỏi của lớp đó ? Bài 13 : Lớp 6A có 45 học sinh. Trong đó, số học sinh trung bình chiếm số học sinh cả lớp. Tổng số học sinh khá và giỏi chiếm số học sinh trung bình, còn lại là học sinh yếu kém. Tính số học sinh yếu kém của lớp 6A? Bài 14 : Tuấn có tất cả 54 viên bi gồm ba màu là xanh, cam, tím. Trong đó, số viên bi xanh chiếm tổng số viên bi, số viên bi cam chiếm số viên bi còn lại. Tính xem Tuấn có bao nhiêu viên bi màu tím ? Bài 15 : Một lớp học có 40 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh khá chiếm số học sinh cả lớp. Số học sinh giỏi chiếm số học sinh còn lại. Tính số học sinh trung bình của lớp đó ? Bài 16: Lớp 6A có 40 học sinh. Điểm kiểm tra Toán gồm 4 loại: Giỏi, khá, trung bình và yếu. Trong đó số bài đạt điểm giỏi chiếm tổng số bài, số bài đạt điểm khá chiếm số bài đạt điểm giỏi. Loại yếu chiếm số bài còn lại. a) Tính số bài kiểm tra mỗi loại của lớp. b) Tính tỉ số phần trăm học sinh đạt điểm trung bình, yếu so với học sinh cả lớp

    --- Bài cũ hơn ---

  • Đáp Án Ngữ Văn Lớp 6 Tập 2
  • Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Năm Học 2014
  • Tham Khảo Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Tuyển Chọn Hay Nhất 2022
  • Đáp Án Lưu Hoằng Trí Unit 1 Lớp 6
  • Lưu Hoằng Trí Lớp 6 Có Đáp Án
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 2

    --- Bài mới hơn ---

  • Hàm Số Bậc Hai Toán Lớp 10 Bài 3 Giải Bài Tập
  • Bản Mềm: Bài Tập Ôn Luyện Các Dạng Toán Lớp 3
  • 51 Bài Tập Cuối Tuần Toán Lớp 3 Học Kì 2 Chọn Lọc, Có Đáp Án
  • 71 Bài Toán Bồi Dưỡng Học Sinh Giỏi Lớp 3
  • 3 Dạng Toán Quan Trọng Của Bài Toán Lớp 3 Có 2 Lời Giải
  • Chương trình toán lớp 2 không có kiến thức quá nặng nhưng rất quan trọng. Xây dựng nền tảng cho lớp học tiếp theo. Tuy không khó nhưng toán lớp 2 đã hình thành kiến thức rõ nét hơn ở lớp 1.

    Đối với một số học sinh cần cố gắng có thể gặp khó khăn. Nhất là dạng toán có lời văn. Việc tóm tắt bài giải, tìm dữ liệu chính từ bài toán cũng cần có phương pháp hợp lý.

    Thế nào là dạng toán có lời văn

    Chuyên đề giải toán có lời văn lớp 2 là dạng toán chắc chắn sẽ xuất hiện trong đề thi cuối kì 2 các lớp.

    Do đó, đây là dạng toán vô cùng quan trọng. Dạng toán có lời văn là dạng toán bài cho dữ liệu dưới dạng lời văn. Từ đó, học sinh sẽ tìm cách tìm giá trị bài toán yêu cầu.

    Dạng toán này sẽ giúp học sinh khai thác khả năng đọc hiểu của học sinh. Ngoài ra, nó cũng giúp học sinh ôn tập toàn bộ những dạng toán được học và vận dụng chúng vào giải toán.

    Nội dung của chuyên đề giải toán có lời văn lớp 2

    Giới thiệu một số phương pháp hướng dẫn học sinh giải toán có lời văn. Trước tiên là xác định các bước.

    Bước 1:Tìm hiểu nội dung bài toán

    Bước 2: Tìm cách giải bài toán

    – Chọn phép tính giải thích hợp

    – Đặt câu lời giải thích hợp

    – Trình bày bài giải

    Tài liệu hữu ích cho giáo viên đang cần soạn thảo sáng kiến kinh nghiệm. Đầy đủ các chia sẻ về kinh nghiệm hướng dẫn giải toán có lời văn cho học sinh lớp 2. Để học sinh học tốt, giáo viên cần thường xuyên trau dồi kiến thức. Tìm kiếm tài liệu tìm ra phương pháp tối ưu để giúp học sinh của mình hiểu bài. Đạt kết quả như mong muốn của mỗi cá nhân.

    Cần kết hợp với các phương pháp khác trong quá trình giảng dạy để tăng hiệu quả. Đối với học sinh hiểu chậm, nên sử dụng thêm giáo cụ trực quan. Để các em hình dung ra được các yếu tố trong bài toán. Sử dụng tranh ảnh, đồ vật, que tính để hỗ trợ trong quá trình học tập.

    Cách đặt lời giải sao cho đúng chuẩn

    Hỏi Lan cần bao nhiêu tiền mua sách ?

    Lời giải: Lan cần số tiền mua sách là:

    Hỏi Hoa có tất cả bao nhiêu quả táo ?

    Lời giải: Hoa có tất cả số quả táo là:

    Tải tài liệu miễn phí ở đây

    --- Bài cũ hơn ---

  • Rèn Luyện Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Bản Mềm: Tuyển Tập 30 Bài Toán Có Lời Văn Lớp 3 Có Hướng Dẫn
  • 30 Bài Toán Có Lời Văn Lớp 3 (Có Đáp Án)
  • 300 Bài Toán Có Lời Văn Cơ Bản Lớp 3
  • Giải Vở Bài Tập Toán 5 Bài 76: Luyện Tập Trang 92,93
  • Các Bài Toán Hình Học Lớp 9 Có Lời Giải

    --- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Đề Thi Học Kì 1 Của Các Trường Có Lời Giải

    --- Bài mới hơn ---

  • Đáp Án Vở Bài Tập Ngữ Văn 6 Tập 2
  • Đáp Án Tham Khảo Môn Ngữ Văn Thi Thpt Quốc Gia 2022
  • Kỳ Thi Thpt Quốc Gia 2022: Đề Thi Và Đáp Án Môn Ngữ Văn
  • Đáp Án Môn Ngữ Văn Thpt Quốc Gia 2022 Đề Dự Bị
  • Đáp Án Môn Ngữ Văn Thpt Quốc Gia 2022 Chính Thức Từ Bộ Gd&đt
  • Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Nam Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn Văn lớp 9 năm 2022 – 2022 sở GD & ĐT Vĩnh Phúc với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn Văn lớp 9 năm 2022 – 2022 quận Bắc Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hai Bà Trưng với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Bình Chánh với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hoàng Mai với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Củ Chi với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Đông Anh với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Nam Từ Liêm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Thanh Xuân với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Long Biên với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hoàn Kiếm với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Cầu Giấy với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận 10 với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Thanh Trì với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Hà Đông với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 tỉnh Bạc Liêu với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Bình Tân với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Tân Châu với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận 7 với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 quận Tân Bình với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Đà Lạt với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 huyện Quốc Oai với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Thủ Dầu Một với cách giải nhanh và chú ý quan trọng

    Giải chi tiết đề thi kì 1 môn văn lớp 9 năm 2022 – 2022 Duy Tiên với cách giải nhanh và chú ý quan trọng

    --- Bài cũ hơn ---

  • Câu Hỏi Trắc Nghiệm Học Kì 1 Môn Ngữ Văn Lớp 7 (Có Đáp Án)
  • Đáp Án Vở Bài Tập Ngữ Văn Lớp6 Bài Sông Nước Cà Mau
  • Giải Bài Tập Ngữ Văn Lớp 6 Bài 14: Con Hổ Có Nghĩa
  • Soạn Bài Từ Và Cấu Tạo Của Từ Tiếng Việt
  • Đề Thi Thpt Quốc Gia 2022 Môn Toán Có Đáp Án
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 3

    --- Bài mới hơn ---

  • Chuyên Đề Giải Toán Có Lời Văn Lớp 4&5
  • Những Bài Giải Toán Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • QUY MỘT TIẾT DẠY GIẢI TOÁN CÓ LỜI VĂN

    1. Hình thành kiến thức mới

    – GV nêu ví dụ 1:

    – HS đọc bài toán

    – Hướng dẫn học sinh phân tích đề toán

    – Hướng dẫn học sinh tóm tắt bài toán ( bằng hình vẽ, bằng sơ đồ hoặc bằng lời).

    – Hướng dẫn học sinh giải bài toán.

    – Học sinh giải bài toán.

    – GV hướng dẫn học sinh nhận xét, bổ sung, sửa chữa.

    – Kiểm tra và thử lại kết quả tính.

    – Rút ra phương pháp giải toán có lời văn kiểu bài Rút về đơn vị.

    * GV nêu ví dụ 2:

    (Hướng dẫn học sinh giải bài toán 2 tương tự bài toán 1)

    2. Hướng dẫn học sinh thực hành luyện tập

    * Yêu cầu HS làm bài 1

    – HS đọc bài toán (3 – 5 HS, nếu HS đọc yếu giáo viên đọc mẫu).

    – Hướng dẫn học sinh phân tích và tóm tắt bài toán

    – Yêu cầu HS xác định dạng toán.

    – HS nhắc lại các cách giải bài toán (như ví dụ 1 và 2).

    – Hướng dẫn học sinh tìm hiểu và khai thác nội dung bài toán.

    – Yêu cầu tự tóm tắt bài toán (học sinh yếu giáo viên gợi ý và hướng dẫn).

    – GV Hướng dẫn để học sinh tự nêu miệng các bước giải, tự nêu câu lời giải và phép tính.

    – Học sinh trình bày bài giải.

    – GV và học sinh nhận xét, bổ sung sửa chữa.

    – Kiểm tra và thử lại kết quả.

    – Yêu cầu học sinh nhắc lại phương pháp giải bài toán có lời văn kiểu bài rút về đơn vị.

    * Hướng dẫn học sinh làm những bài tập còn lại tương tự bài tập 1.

    1. Giới thiệu bài (Trực tiếp) Ghi bảng

    2. Dạy bài mới

    a. Bài toán 1

    – GV nêu bài toán 1

    – Giáo viên hướng dẫn học sinh phân tích bài toán:

    ? Bài toán cho biết gì?

    ? Bài toán hỏi gì?

    – GV đưa hình vẽ minh họa tóm tắt bài toán. Yêu cầu học sinh đọc lại đề toán, nêu lại tóm tắt các dữ kiện đã cho và yêu cầu cần phải tìm?

    ? Muốn biết mỗi can có mấy lít mật ong ta thực hiện phép tính ?

    ? Ta lấy bao nhiêu chia cho bao nhiêu? Vì sao?

    ? Để tìm số mật ong trong mỗi can ta viết câu lời giải thế nào?

    – Yêu cầu vài học sinh nêu lại cách giải bài toán.

    – Gọi 1 HS lên bảng trình bày bài giải, dưới lớp cho HS làm vào giấy nháp.

    – Nhận xét:

    – Cho HS nhắc lại: Biết số mật ong của 7 can, muốn tìm số mật ong của 1 can ta làm thế nào?

    * GV kết luận: Bước này gọi là bước rút về đơn vị, tức là tính giá trị của một

    --- Bài cũ hơn ---

  • Đề Tài Một Số Biện Pháp Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • “nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5”
  • Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 5 Thhoasonahoabinh2Edu Doc
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Đề Tài Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Tổng Hợp Các Dạng Toán Về Phương Trình Đường Thẳng Trong Các Đề Thi (Có Lời Giải)

    --- Bài mới hơn ---

  • Các Dạng Toán Về Phương Trình Đường Thẳng Trong Không Gian Oxyz Và Bài Tập
  • 8 10 Bài Tập Phép Đồng Dạng File Word Có Lời Giải Chi Tiết
  • Bài Tập Trắc Nghiệm Phương Trình Mặt Phẳng Có Đáp Án
  • Giải Sbt Bài 1. Quy Tắc Đếm
  • Giải Sbt Công Nghệ 7 Bài 33: Một Số Phương Pháp Chọn Lọc Và Quản Lý Giống Vật Nuôi
  • Published on

    Tổng hợp các dạng toán về phương trình đường thẳng trong các đề thi (có lời giải) (hệ trục Oxy). được Sưu tầm & biên soạn: Lộc Phú Đa – Việt Trì – Phú Thọ . Tài liệu có 59 trang file word. Các bài toán đều có hướng dẫn giải rõ ràng và chi tiết. Đây là tài liệu không thể thiếu cho các em đang ôn thi THPT quốc gia môn Toán

    http://giavienb.net/

    1. 1. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 1 Jun . 17 C E  Bài 1Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng 27 2 Hướng dẫn:V× G n”m trªn ®-êng th¼ng 02  yx nªn G cã täa ®é )2;( ttG  . Khi ®ã ( 2;3 )AG t t    , ( 1; 1)AB     VËy diÖn tÝch tam gi¸c ABG lµ     1)3()2(2 2 1 .. 2 1 22 2 22  ttABAGABAGS = 2 32 t NÕu diÖn tÝch tam gi¸c ABC b”ng 27 2 th× diÖn tÝch tam gi¸c ABG b”ng 27 9 6 2  . VËy 2 3 9 2 2 t   , suy ra 6t hoÆc 3t . VËy cã hai ®iÓm G : )1;3(,)4;6( 21  GG . V× G lµ träng t©m tam gi¸c ABC nªn 3 ( )C G A Bx x x x   vµ 3 ( )C G A By y y y   . Víi )4;6(1 G ta cã )9;15(1 C , víi )1;3(2 G ta cã )18;12(2 C Bài 2Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; 3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. Hướng dẫn:Gọi  là đường thẳng đi qua trung điểm của AC và AB Ta có   6 6 4 , 4 2 2 d A      Vì  là đường trung bình của  ABC    ; 2 ; 2.4 2 8 2d A BC d A     Gọi phương trình đường thẳng BC là: 0x y a   Từ đó: 46 6 8 2 12 16 282 aa a a            Nếu 28a   thì phương trình của BC là 28 0x y   , trường hợp này A nằm khác phía đối với BC và  , vô lí. Vậy 4a  , do đó phương trình BC là: 4 0x y   . Đường cao kẻ từ A của ABC là đường thẳng đi qua A(6;6) và BC : 4 0x y   nên có phương trình là 0x y  . Tọa độ chân đường cao H kẻ từ A xuống BC là nghiệm của hệ phương trình 0 2 4 0 2 x y x x y y              Vậy H (-2;-2) VìBC có phương trình là 4 0x y   nên tọa độ B có dạng: B(m; -4-m) Lại vì H là trung điểm BC nên C(-4-m;m) Suy ra:  5 ; 3 , ( 6; 10 )CE m m AB m m          ;Vì CE AB nên      . 0 6 5 3 10 0ABCE a a a a           2 0 2 12 0 6 a a a a        Vậy     0; 4 4;0 B C    hoặc     6;2 2; 6 B C    . B H
    2. 6. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 6 Jun . 17 độ các đỉnh của tam giác. Bài 16. Bài 17 . 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 2 35 30 25 20 15 10 5 5 10 15 x+y-5=0 Hướng dẫn: * tìm M’ là điểm đối xứng của M qua BD * Viết pt đường cao AH . (Đi qua H, có vtpt:n =HM’ * Tìm các điểm A và B thuộc các đường phân giác BD và đường cao AH ,đối xứng nhau qua M c M’ M H B D 10 8 6 4 2 2 4 6 10 5 5 10 x+7y-31=0 Hướng dẫn: * Viết pt đường thẳng (D) đi qua M và tạo với đt d 1 góc 45°, Đỉnh B là giao của (D) và d * Viết pt đường thẳng (D’) đi qua N và vuông góc với (D). Đỉnh C là giao của d và (D’) * Từ đó suy ra đỉnh A ( Bài toán có nhiều hướng giải khác nhau) A’ C’ A M N C B 6 4 2 2 4 6 15 10 5 5 x+y+3=0 x-4y-2=0 Hướng dẫn: *Do tam giác ABC cân tại A, nên khi dựng hình bình hành AMEM’ thì AMEM’ là hình thoi và tâm I là hình chiếu của M trên đường cao AH. * Từ đó ta có cách xác định các đỉnh A,B,C như sau: +viết pt đt EM ( đi qua M,//d ); Xác dịnh giao điểm E cảu ME và đường cao AH. +Xác định hình chiếu I của M trên AH,và xác định tọa độ của A + xác định B là giao của MA và d +Xác định C là điểm đối xứng của B qua AH H I M’ E B M(1;1) A C
    3. 8. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 8 Jun . 17 Bài 21 Trong mặt phẳng Oxy cho các điểm        A 1;0 ,B 2;4 ,C 1;4 ,D 3;5  và đường thẳng d:3x y 5 0   . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau Hướng dẫn:M thuộc d thi M(a;3a-5 ) – Mặt khác :     1 3;4 5, : 4 3 4 0 3 4 x y AB AB AB x y                 1 4 4;1 17; : 4 17 0 4 1 x y CD CD CD x y             – Tính :       1 2 4 3 3 5 4 4 3 5 1713 19 3 11 , , 5 5 17 17 a a a aa a h M AB h             – Nếu diện tich 2 tam giác bằng nhau thì : 1 2 11 13 19 3 115.13 19 17. 3 111 1 . . 12 13 19 11 32 2 5 17 8 a aa a a AB h CD h a a a                 – Vậy trên d có 2 điểm :  1 2 11 27 ; , 8;19 12 12 M M       Bài 22. Viết phương trình cạnh BC của tam giác ABC , biết tọa độ chân các đường cao tương ứng là A’,B’,C’. Hướng dẫn: Bài chúng tôi hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C Hướng dẫn: – Nếu C nằm trên d : y=x thì A(a;a) do đó suy ra C(2a-1;2a).- Ta có :   0 2 , 2 2 d B d    . – Theo giả thiết :       2 21 4 . , 2 2 2 2 0 2 2 S AC d B d AC a a        2 2 1 3 28 8 8 4 2 2 1 0 1 3 2 a a a a a a                 Gọi H là trực tâm ABC,Dễ c/m dược A’H,B’H,C’H là các đường phân giác trong của tam giác A’B’C’. và viết được phương trình của A’H, ,Từ đó suy ra phương trình của BC. A’ C’ B’ H B C A
    4. 9. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 9 Jun . 17 – Vậy ta có 2 điểm C : 1 2 1 3 1 3 1 3 1 3 ; , ; 2 2 2 2 C C                   Bài 24.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )5;2(,)1;1( BA , ®Ønh C n”m trªn ®-êng th¼ng 04 x , vµ träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 0632  yx . TÝnh diÖn tÝch tam gi¸c ABC. Hướng dẫn: – Tọa độ C có dạng : C(4;a) ,     5 3;4 1 1 : 4 3 7 0 3 4 AB AB x y AB x y              – Theo tính chát trọng tâm ; 1 2 4 1 3 3 1 5 6 3 33 A B C G G A B C GG x x x x x y y y a a yy                       – Do G nằm trên : 2x-3y+6=0 , cho nên : 6 2.1 3 6 0 2 3 a a            . – Vậy M(4;2) và     4.4 3.2 7 1 1 15 , 3 . , 5.3 2 2 216 9 ABCd C AB S AB d C AB          (đvdt) Bài 25.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng13,5 . Hướng dẫn:Ta có : M là trung điểm của AB thì M 3 1 ; 2 2       . Gọi C(a;b) , theo tính chất trọng tam tam giác : 3 3 3 3 G G a x b y       ; Do G nằm trên d :   3 3 2 0 6 1 3 3 a b a b         – Ta có :       3 52 1 1;3 : 3 5 0 , 1 3 10 a bx y AB AB x y h C AB              – Từ giả thiết :   2 5 2 51 1 . , 10. 13,5 2 2 210 ABC a b a b S AB h C AB         2 5 27 2 32 2 5 27 2 5 27 2 22 a b a b a b a b a b                     – Kết hợp với (1) ta có 2 hệ :  1 2 20 6 6 3 2 32 3 38 38 38 20 ; , 6;12 3 3 36 6 122 22 3 18 6 b a b a b a b a a C C a b a b ba b a a                                                    Bài 26Trong mặt phẳng oxy cho ABC có A(2;1) . Đường cao qua đỉnh B có phương trình x- 3y – 7 = 0 .Đường trung tuyến qua đỉnh C có phương trình : x + y +1 = 0 . Xác định tọa độ B và C . Tính diện tích ABC .
    5. 10. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 10 Jun . 17 Hướng dẫn:- Đường thẳng (AC) qua A(2;1) và vuông góc với đường cao kẻ qua B , nên có véc tơ chỉ phương       2 1; 3 : 1 3 x t n AC t R y t          – Tọa độ C là giao của (AC) với đường trung tuyến kẻ qua C : 2 1 3 1 0 x t y t x y           Giải ta được : t=2 và C(4;-5). Vì B nằm trên đường cao kẻ qua B suy ra B(3a+7;a) . M là trung điểm của AB 3 9 1 ; 2 2 a a M         . – Mặt khác M nằm trên đường trung tuyến kẻ qua C :   3 9 1 1 0 3 1; 2 2 2 a a a B            – Ta có :       122 1 1; 3 10, : 3 5 0, ; 1 3 10 x y AB AB AB x y h C AB               Vậy :   1 1 12 . , 10. 6 2 2 10 ABCS AB h C AB   (đvdt). Bài 27 Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC Hướng dẫn:- Gọi B(a;b) suy ra M 5 2 ; 2 2 a b       . M nằm trên trung tuyến nên : 2a-b+14=0 (1). – B,B đối xứng nhau qua đường trung trực cho nên :    : x a t BC t R y b t      . Từ đó suy ra tọa độ N : 6 2 3 6 2 6 0 6 2 a b t x a t a b y b t x x y b a y                       3 6 6 ; 2 2 a b b a N           . Cho nên ta có tọa độ C(2a-b-6;6-a ) – Do C nằm trên đường trung tuyến : 5a-2b-9=0 (2) – Từ (1) và (2) :     2 14 0 37 37;88 , 20; 31 5 2 9 0 88 a b a B C a b b                  Bài 28Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng  : 3 8 0x y   , ‘:3 4 10 0x y    và điểm A(-2 ; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng  , đi qua điểm A và tiếp xúc với đường thẳng  ‘. Hướng dẫn:: – Gọi tâm đường tròn là I , do I thuộc   2 3 : 2 3 ; 2 2 x t I t t y t             – A thuộc đường tròn     2 2 3 3IA t t R     (1) A(5;2) B C x+y-6=0 2x-y+3=0 M N
    6. 11. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 11 Jun . 17 – Đường tròn tiếp xúc với    3 2 3 4 2 10 13 12 ‘ 5 5 t t t R R             . (2) – Từ (1) và (2) :           2 2 2 2 213 12 3 3 25 3 3 13 12 5 t t t t t t             Bài 29 Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn 2 2 ( ): – 2 – 2 1 0,C x y x y   2 2 ( ‘): 4 -5 0C x y x   cùng đi qua M(1; 0). Viết phương trình đường thẳng qua M cắt hai đường tròn ( ), ( ‘)C C lần lượt tại A, B sao cho MA= 2MB Hướng dẫn:* Cách 1. – Gọi d là đường thẳng qua M có véc tơ chỉ phương   1 ; : x at u a b d y bt        – Đường tròn        1 1 1 2 2 2: 1;1 , 1. : 2;0 , 3C I R C I R   , suy ra :           2 2 2 2 1 2: 1 1 1, : 2 9C x y C x y       – Nếu d cắt  1C tại A :   2 2 2 2 2 2 2 2 2 2 0 2 2 2 0 1 ;2 t M ab b a b t bt Ab a b a bt a b                 – Nếu d cắt  2C tại B :   2 2 2 2 2 2 2 2 2 2 0 6 6 6 0 1 ;6 t M a ab a b t at Ba a b a bt a b                   – Theo giả thiết : MA=2MB  2 2 4 *MA MB  – Ta có : 2 22 22 2 2 2 2 2 2 2 2 2 2 2 6 6 4 ab b a ab a b a b a b a b                               2 2 2 2 2 2 2 2 6 :6 6 04 36 4. 36 6 :6 6 0 b a d x yb a b a b a d x ya b a b                    * Cách 2. – Sử dụng phép vị tự tâm I tỉ số vị tự k= 1 2  . ( Học sinh tự làm ) Bài 30 Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm (1;0)H , chân đường cao hạ từ đỉnh B là (0; 2)K , trung điểm cạnh AB là (3;1)M . Hướng dẫn:- Theo tính chất đường cao : HK vuông góc với AC cho nên (AC) qua K(0;2) có véc tơ pháp tuyến      1; 2 : 2 2 0 2 4 0KH AC x y x y           . – B nằm trên (BH) qua H(1;0) và có véc tơ chỉ phương    1; 2 1 ; 2KH B t t      . – M(3;1) là trung điểm của AB cho nên A(5-t;2+2t). – Mặt khác A thuộc (AC) cho nên : 5-t-2(2+2t)+4=0 , suy ra t=1 . Do đó A(4;4),B(2;-2) – Vì C thuộc (AC) suy ra C(2t;2+t) ,    2 2;4 , 3;4BC t t HA      . Theo tính chất đường cao kẻ từ A :    . 0 3 2 2 4 4 0 1HA BC t t t            . Vậy : C(-2;1). H(1;0) K(0;2) M(3;1) A B C
    7. 12. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 12 Jun . 17 – (AB) qua A(4;4) có véc tơ chỉ phương       4 4 2;6 // 1;3 : 1 3 x y BA u AB         3 8 0x y    – (BC) qua B(2;-2) có véc tơ pháp tuyến        3;4 :3 2 4 2 0HA BC x y       3 4 2 0x y    . Bài 31 Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình   2 2 1 : 4 5 0C x y y    và   2 2 2 : 6 8 16 0.C x y x y     Lập phương trình tiếp tuyến chung của  1C và  2 .C Hướng dẫn:: – Ta có :               2 2 22 1 1 1 2 2 2: 2 9 0;2 , 3, : 3 4 9 3; 4 , 3C x y I R C x y I R            – Nhận xét :  1 2 19 4 13 3 3 6I I C       không cắt  2C – Gọi d : ax+by+c =0 ( 2 2 0a b  ) là tiếp tuyến chung , thế thì :    1 1 2 2, , ,d I d R d I d R      2 2 2 2 2 2 2 2 2 3 1 3 4 22 3 4 2 3 4 3 4 23 4 3 2 b c a b c b cb c a b ca b b c a b c a b c b ca b c a b a b a b                                 2 3 2 2 0 a b a b c       . Mặt khác từ (1) :    2 2 2 2 9b c a b    – Trường hợp : a=2b thay vào (1) :       2 2 2 2 2 2 2 2 2 3 5 4 2 9 4 41 4 0. ‘ 4 41 45 2 3 5 4 b b c b b c b b b bc c c c c c b                     – Do đó ta có hai đường thẳng cần tìm :        1 2 3 5 2 3 5 : 1 0 2 2 3 5 2 3 5 4 0 2 4 d x y x y                   1 2 3 5 2 3 5 : 1 0 2 2 3 5 2 3 5 4 0 2 4 d x y x y            – Trường hợp : 2 3 2 b a c   , thay vào (1) : 2 2 2 2 2 3 2 2 3 2 b a b b a a b a b           2 2 2 2 0, 20 2 2 3 4 0 4 4 , 6 3 3 6 a b a cb c b a a b b ab a a a b a c b c                           – Vậy có 2 đường thẳng : 3 :2 1 0d x   , 4 :6 8 1 0d x y   Bài 32 Trong hệ tọa độ Oxy, hãy viết phương trình hyperbol (H) dạng chính tắc biết rằng (H) tiếp xúc với đường thẳng : 2 0d x y   tại điểm A có hoành độ bằng 4. Hướng dẫn:- Do A thuộc d : A(4;2)
    8. 13. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 13 Jun . 17 – Giả sử (H) :       2 2 2 2 2 2 16 4 1 * 1 1 x y A H a b a b        – Mặt khác do d tiếp xúc với (H) thì hệ sau có 12 nghiệm bằng nhau :    2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 4 4 02 2 2 2 b a x a x a a bb x a y a b b x a x a b y x y x y x                              4 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 ‘ 4 4 4 4 0 4a a b a a a b a b a b a b a b b a a b                – Kết hợp với (1) :   2 2 2 2 4 2 2 2 2 2 2 2 2 2 16 4 8 16 0 4 : 1 8 44 4 8 b a a b b b b x y H a b a b a                           Bài 33 Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Dễ nhận thấy B là giao của BD với AB cho nên tọa dộ B là nghiệm của hệ : 2 1 0 21 13 ; 7 14 0 5 5 x y B x y             – Đường thẳng (BC) qua B(7;3) và vuông góc với (AB) cho nên có véc tơ chỉ phương:     21 5 1; 2 : 13 2 5 x t u BC y t             – Ta có :    , 2 2 2 ,AC BD BIC ABD AB BD       – (AB) có  1 1; 2n    , (BD) có   1 2 2 1 2 n . 1 14 15 3 1; 7 os = 5 50 5 10 10 n n c n n              – Gọi (AC) có     2 2 2 a-7b 9 4 , os AC,BD os2 = 2cos 1 2 1 10 550 n a b c c a b                 – Do đó :    22 2 2 2 2 2 5 7 4 50 7 32 31 14 17 0a b a b a b a b a ab b            – Suy ra :         17 17 : 2 1 0 17 31 3 0 31 31 : 2 1 0 3 0 a b AC x y x y a b AC x y x y                         – (AC) cắt (BC) tại C 21 5 13 7 14 5 2 ; 5 15 3 3 3 0 x t y t t C x y                       – (AC) cắt (AB) tại A :   2 1 0 7 7;4 3 0 4 x y x A x y y               – (AD) vuông góc với (AB) đồng thời qua A(7;4) suy ra (AD) : 7 4 2 x t y t     
    9. 14. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 14 Jun . 17 – (AD) cắt (BD) tại D : 7 7 98 46 4 2 ; 15 15 15 7 14 0 x t y t t D x y                  – Trường hợp (AC) : 17x-31y-3=0 …..làm tương tự . Bài 34 Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG Hướng dẫn::- B thuộc d suy ra B : 5 x t y t      , C thuộc d’ cho nên C: 7 2x m y m     . – Theo tính chất trọng tâm :  2 9 2 2, 0 3 3 G G t m m t x y          – Ta có hệ : 2 1 2 3 1 m t m t m t             – Vậy : B(-1;-4) và C(5;1) . Đường thẳng (BG) qua G(2;0) có véc tơ chỉ phương  3;4u   , cho nên (BG):   20 15 82 13 4 3 8 0 ; 3 4 5 5 x y x y d C BG R            – Vậy đường tròn có tâm C(5;1) và có bán kính R=       2 213 169 : 5 1 5 25 C x y     Bài 35Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1 Hướng dẫn:- Đường (AB) cắt (BC) tại B 2 5 1 0 12 23 0 x y x y        Suy ra : B(2;-1). . (AB) có hệ số góc k=12, đường thẳng (BC) có hệ số góc k’= 2 5 , do đó ta có : 2 12 5tan 2 2 1 12. 5 B     . Gọi (AC) có hệ số góc là m thì ta có : 2 2 55tan 2 5 21 5 m m C m m      . Vì tam giác ABC cân tại A cho nên tanB=tanC, hay ta có : 8 2 5 4 102 5 2 2 5 2 2 5 9 2 5 4 105 2 12 m m mm m m m mm m                    – Trường hợp :     9 9 : 3 1 9 8 35 0 8 8 m AC y x x y           – Trường hợp : m=12 suy ra (AC): y=12(x-3)+1 hay (AC): 12x-y-25=0 ( loại vì nó //AB ). – Vậy (AC) : 9x+8y-35=0 . Bài 36 Viết phương trình tiếp tuyến chung của hai đường tròn : A(2;3) B C x+y+5=0 x+2y-7=0 G(2;0) M A B C 2x-5y+1=0 M(3;1) H 12x-y-23=0
    10. 15. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 15 Jun . 17 B(2;-1) A C x+2y-5=0 3x-4y+27=0 H K (C1) : (x – 5)2 + (y + 12)2 = 225 và (C2) : (x – 1)2 + ( y – 2)2 = 25 Hướng dẫn:- Ta có (C) với tâm I(5;-12) ,R=15. (C’) có J(1;2) và R’=5. Gọi d là tiếp tuyến chung có phương trình : ax+by+c=0 ( 2 2 0a b  ). – Khi đó ta có :        2 2 2 2 5 12 2 , 15 1 , , 5 2 a b c a b c h I d h J d a b a b           – Từ (1) và (2) suy ra : 5 12 3 6 3 5 12 3 2 5 12 3 6 3 a b c a b c a b c a b c a b c a b c                   9 3 2 2 a b c a b c        . Thay vào (1) : 2 2 2 5a b c a b    ta có hai trường hợp : – Trường hợp : c=a-9b thay vào (1) :    2 2 2 2 2 2 7 25 21 28 24 0a b a b a ab b       Suy ra : 14 10 7 14 10 7 175 10 7 : 0 21 21 21 14 10 7 14 10 7 175 10 7 : 0 21 21 21 a d x y a d x y                               – Trường hợp :      2 2 2 2 23 2 1 : 7 2 100 96 28 51 0 2 c a b b a a b a ab b           . Vô nghiệm . ( Phù hợp vì : 16 196 212 ‘ 5 15 20 400IJ R R         . Hai đường tròn cắt nhau ) . Bài 37. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : 2 2 x y 2x 8y 8 0     . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. Hướng dẫn:Đường thẳng d’ song song với d : 3x+y+m=0 – IH là khoảng cách từ I đến d’ : 3 4 1 5 5 m m IH       – Xét tam giác vuông IHB : 2 2 2 25 9 16 4 AB IH IB             2 19 ‘:3 19 01 16 1 20 21 ‘:3 21 025 m d x ym m m d x y                    Bài 38.Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y- 5=0 Hướng dẫn:- Đường thẳng (BC) qua B(2;-1) và vuông góc với (AH) suy ra (BC): 2 3 1 4 x t y t       , hay :   2 1 4 3 7 0 4;3 3 4 x y x y n             – (BC) cắt (CK) tại C :   2 3 1 4 1 1;3 2 5 0 x t y t t C x y                 – (AC) qua C(-1;3) có véc tơ pháp tuyến  ;n a b  Suy ra (AC): a(x+1)+b(y-3)=0 (*). Gọi 4 6 10 2 os = 5 16 9 5 5 5 KCB KCA c          
    11. 16. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 16 Jun . 17 – Tương tự :    2 2 2 2 2 2 2 a+2b a+2b 2 os = 2 4 55 5 c a b a b a b a b                2 0 3 0 3 0 3 4 0 4 4 1 3 0 4 3 5 0 3 3 a b y y a ab b a x y x y                        – (AC) cắt (AH) tại A :  1 2 3 3 0 5 3 4 27 0 31 58231 5;3 , ; 25 254 3 5 0 25 3 4 27 0 582 25 y y x x y A Ax x y x y y                                – Lập (AB) qua B(2;-1) và 2 điểm A tìm được ở trên . ( học sinh tự lập ). Bài 39.Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuôngtại A, phương trình đường thẳng BC là : 3 x – y – 3 = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . Hướng dẫn:- Đường thẳng (BC) cắt Ox tại B : Cho y=0 suy ra x=1 , B(1;0) . Gọi A(a;0) thuộc Ox là đỉnh của góc vuông ( a khác 1 ).. Đường thẳng x=a cắt (BC) tại C :   ; 3 1a a  . – Độ dài các cạnh : 2 2 2 1 , 3 1 2 1AB a AC a BC AB AC BC a          – Chu vi tam giác : 2p=    3 3 1 1 3 1 2 1 3 3 1 2 a a a a a p             – Ta có : S=pr suy ra p= S r .(*) Nhưng S=   21 1 3 . 1 3 1 1 2 2 2 AB AC a a a     . Cho nên (*) trở thành :      2 3 2 31 3 3 3 1 1 1 1 2 3 1 2 4 1 2 3 a a a a a                 – Trọng tâm G :       1 2 3 2 3 12 1 7 4 3 3 7 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                  2 2 1 2 3 12 1 1 4 3 3 1 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                 Bài 40.Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : 012422  yxyx và đường thẳng d : 01  yx . Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến Hướng dẫn:
    12. 17. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 17 Jun . 17 – M thuộc d suy ra M(t;-1-t). . Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông ( A,B là 2 tiếp điểm ). Do đó AB=MI= IA 2 =R 2 = 6 2 2 3 . – Ta có :     2 2 2 2 2 2 8 2 3MI t t t       – Do đó :     1 2 2 2 2 2; 2 1 2 8 12 2 2 2; 2 1 t M t t t M                 . * Chú ý : Ta còn cách khác – Gọi d’ là đường thẳng qua M có hệ số góc k suy ra d’ có phương trình : y=k(x-t)-t-1, hay : kx-y-kt-t-1=0 (1) . – Nếu d’ là tiếp tuyến của (C) kẻ từ M thì d(I;d’)=R 2 2 2 6 1 k kt t k                  2 2 2 2 2 2 2 6 1 4 2 2 2 2 4 2 0t k t k t t k t t k t t                  – Từ giả thiết ta có điều kiện :      2 2 2 2 2 2 4 2 0 ‘ 4 2 4 2 4 0 4 2 1 4 2 t t t t t t t t t t t                         –   1 22 2 1 2 2 1 2 2 6 1 ‘ 19 0 2 ;2 12 t k k t t t k k M k kt                         Bài 41.Trong mặt phẳng với hệ tọa độ Oxy. Cho elip (E) : 044 22  yx .Tìm những điểm N trên elip (E) sao cho : 0 21 60ˆ FNF ( F1 , F2 là hai tiêu điểm của elip (E) ) Hướng dẫn:: – (E) : 2 2 2 2 2 1 4, 1 3 3 4 x y a b c c         – Gọi     2 2 0 0 0 0 1 0 2 0 1 2 4 4 3 3 ; 2 ; 2 2 2 2 3 x y N x y E MF x MF x F F                . Xét tam giác 1 2FMF theo hệ thức hàm số cos :   2 2 2 0 1 2 1 2 1 22 os60F F MF MF MFMF c      2 2 2 0 0 0 0 3 3 3 3 2 3 2 2 2 2 2 2 2 2 x x x x                                   0 0 2 2 2 2 2 0 0 0 0 0 00 4 2 1 3 3 9 32 13 3 12 8 4 8 12 4 4 9 94 2 33 x y x x x x y yx                             M x+y+1=0 A B I(2;1)
    13. 18. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 18 Jun . 17 – Như vậy ta tìm được 4 điểm : 1 2 3 4 4 2 1 4 2 1 4 2 1 4 2 1 ; , ; , ; , ; 3 3 3 3 3 3 3 3 N N N N                                  Bài 42.Trong mă ̣t phẳng to ̣a đô ̣Oxy cho điểm A(1;1) và đường thẳng  : 2x + 3y + 4 =0 Tìm tọa độ điểm B thuộc đường thẳng  sao cho đường thẳng AB và  hợp với nhau góc 450 . Hướng dẫn:- Gọi d là đường thẳng qua A(1;1) có véc tơ pháp tuyến  ;n a b  thì d có phương trình dạng : a(x-1)+b(y-1)=0 (*). Ta có  2;3n   . – Theo giả thiết :      20 2 2 2 2 2 3 1 os d, os45 2 2 3 13 213 a b c c a b a b a b                   2 2 1 1 : 1 1 0 5 4 0 5 55 24 5 0 5 :5 1 1 0 5 6 0 a b d x y x y a ab b a b d x y x y                             – Vậy B là giao của d với  cho nên : 1 1 2 2 5 4 0 5 6 032 4 22 32 ; , : ; 2 3 4 0 2 3 4 013 13 13 13 x y x y B B B B x y x y                             Bài 43.Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng 052:1  yxd . d2: 3x +6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. Hướng dẫn:: – Trước hết lập phương trình 2 đường phân giác tạo bởi 2 đường thẳng cắt nhau : 3 6 7 2 5 9 3 8 03 5 5 3 6 7 2 5 3 9 22 0 3 5 5 x y x y x y x y x y x y                     – Lập đường thẳng 1 qua P(2;-1) và vuông góc với tiếp tuyến : 9x+3y+8=0 . 1 2 1 : 3 5 0 9 3 x y x y          – Lập 2 qua P(2;-1) và vuông góc với : 3x-9y+22=0 2 2 1 : 3 5 0 3 9 x y x y           Bài 44.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1 916 22  yx . Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). Hướng dẫn:: – (H) có    2 2 2 1 216, 9 25 5 5;0 , 5;0a b c c F F       . Và hình chữ nhật cơ sở của (H) có các đỉnh :        4; 3 , 4;3 , 4; 3 , 4;3    . – Giả sử (E) có : 2 2 2 2 1 x y a b   . Nếu (E) có tiêu điểm trùng với tiêu điểm của (H) thì ta có phương trình :  2 2 2 25 1c a b   – (E) đi qua các điểm có hoành độ 2 16x  và tung độ  2 2 2 16 9 9 1 2y a b     – Từ (1) và (2) suy ra :   2 2 2 2 40, 15 : 1 40 15 x y a b E     Bài 45.Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: 2 2 4 3 4 0x y x    Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A
    14. 19. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 19 Jun . 17 Hướng dẫn:- (C) có I( 2 3;0 ), R= 4 . Gọi J là tâm đường tròn cần tìm : J(a;b)       2 2 ‘ : 4C x a y b     -Do (C) và (‘) tiếp xúc ngoài với nhau cho nên khoảng cách IJ =R+R’   2 2 2 2 2 3 4 2 6 4 3 28a b a a b          – Vì A(0;2) là tiếp điểm cho nên :       2 2 0 2 4 2a b    – Do đó ta có hệ :     2 2 2 2 2 222 2 3 36 4 3 24 4 02 4 a b a a b a b ba b                  – Giải hệ tìm được : b=3 và a=       2 2 3 ‘ : 3 3 4C x y     . * Chú ý : Ta có cách giải khác . – Gọi H là hình chiếu vuông góc của J trên Ox suy ra OH bằng a và JH bằng b – Xét các tam giác đồng dạng : IOA và IHJ suy ra : 4 2 3 2 IJ 6 2 3 IA IO OA IH HJ ba       – Từ tỷ số trên ta tìm được : b=3 và a= 3 . Bài 46.Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Hình vẽ : ( Như bài 12 ). – Tìm tọa độ B là nghiệm của hệ :   2 1 0 7;3 7 14 0 x y B x y        . – Đường thẳng (BC) qua B(7;3) và       7 1; 2 : 3 2 BC x t AB u BC y t            1 2 17 0 2 BCx y k       . Mặt khác : 1 1 1 1 17 2, tan 1 17 2 31 7 2 BD ABk k         – Gọi (AC) có hệ số góc là k 2 1 2 7 1 2tan 37 3tan 2 17 1 tan 41 1 7 9 k k k k               – Do đó : 17 28 4 3 21 4 7 1 3 7 31 28 4 3 21 1 k k k k k k k k                 – Trường hợp : k=1 suy ra (AC) : y=(x-2)+1 , hay : x-y-1=0 . – C là giao của (BC) với (AC) :   7 3 2 1, 6;5 1 0 x t y t t C x y              – A là giao của (AC) với (AB) :   7 3 2 0, 1;0 2 1 0 x t y t t A x y             – (AD) //(BC) suy ra (AD) có dạng : 2x+y+m=0 (*) , do qua A(1;0) : m= -2 . Cho nên (AD) có phương trình : 2x+y-2=0 . I(-2 2 ;0) A(0;2) y x
    15. 20. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 20 Jun . 17 – D là giao của (AD) với (BD) :   2 2 0 0;2 7 14 0 x y D x y        – Trường hợp : k=- 17 31 cách giải tương tự ( Học sinh tự làm ). Bài 47. Trong mp (Oxy) cho đường thẳng () có phương trình: x – 2y – 2 = 0 và hai điểm A (-1;2); B (3;4). Tìm điểm M() sao cho 2MA2 + MB2 có giá trị nhỏ nhất Hướng dẫn:- M thuộc  suy ra M(2t+2;t ) – Ta có :     2 22 2 2 2 2 3 2 5 8 13 2 10 16 26MA t t t t MA t t           Tương tự :     2 22 2 2 1 4 5 12 17MB t t t t       – Do dó : f(t)=  2 2 15 4 43 ‘ 30 4 0 15 t t f t t t         . Lập bảng biến thiên suy ra min f(t) = 641 15 đạt được tại 2 26 2 ; 15 15 15 t M          Bài chúng tôi đường tròn (C): x2 + y2 – 2x – 6y + 6 = 0 và điểm M (2;4) Viết phương trình đường thẳng đi qua M cắt đường tròn tại 2 điểm A và B, sao cho M là trung điểm của AB Hướng dẫn:- Đường tròn (C) :      2 2 /( )1 3 4 1;3 , 2, 1 1 4 2 0M Cx y I R P M             nằm trong hình tròn (C) . – Gọi d là đường thẳng qua M(2;4) có véc tơ chỉ phương   2 ; : 4 x at u a b d y bt         – Nếu d cắt (C) tại A,B thì :           2 2 2 2 2 1 1 4 2 2 0 1at bt a b t a b t          ( có 2 nghiệm t ) . Vì vậy điều kiện :       2 2 2 2 2 ‘ 2 3 2 3 0 *a b a b a ab b         – Gọi    1 1 2 22 ;4 , 2 ;4A at bt B at bt     M là trung điểm AB thì ta có hệ :         1 2 1 2 1 2 1 2 1 2 4 4 0 0 8 8 0 a t t a t t t t b t t b t t                     . Thay vào (1) khi áp dụng vi ét ta được :   1 2 2 2 2 2 4 0 0 : : 6 0 1 1 a b x y t t a b a b d d x y a b                       Bài 49.Viết phương trình các tiếp tuyến của e líp (E): 2 2 1 16 9 x y   , biết tiếp tuyến đi qua điểmA(4;3) Hướng dẫn:- Giả sử đường thẳng d có véc tơ pháp tuyến  ;n a b  qua A(4;3) thì d có phương trình là :a(x-4)+b(y-3)=0 (*) , hay : ax+by-4a-3b (1) . – Để d là tiếp tuyến của (E) thì điều kiện cần và đủ là :   22 2 .16 .9 4 3a b a b   2 2 2 2 0 : 3 0 16 9 16 24 9 24 0 0 : 4 0 a d y a b a ab b ab b d x                  Bài 50.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 2my + m2 – 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng  cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. Hướng dẫn:- (C) :     2 2 1 25 (1; ), 5x y m I m R      .
    16. 21. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 21 Jun . 17 – Nếu d : mx +4y=0 cắt (C) tại 2 điểm A,B thì   2 2 2 2 4 16 4 2 24 0 1 16 4 m y x m m x x m                     – Điều kiện : 2 ‘ 25 0m m R      . Khi đó gọi 1 1 2 2; , ; 4 4 m m A x x B x x                  2 2 2 2 2 2 1 2 1 2 1 2 16 25 8 16 4 16 m m m AB x x x x x x m            – Khoảng cách từ I đến d = 2 2 4 5 16 16 m m m m m     – Từ giả thiết : 2 2 22 2 51 1 25 25 . .8 . 4 5 12 2 2 1616 16 mm m S AB d m mm m             2 22 2 2 2 25 5 3 25 25 9 16 16 m m m m m m         – Ta có một phương trình trùng phương , học sinh giải tiếp . Bài 51.Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC Hướng dẫn: – (AB) cắt (AC) tại A :   2 0 3;1 2 5 0 x y A x y         – B nằm trên (AB) suy ra B(t; t-2 ), C nằm trên (AC) suy ra C(5-2m;m) – Theo tính chất trọng tâm :     2 8 3 2 1;22 13 1 7 5 5;3 2 3 G G t m x m Ct m t m t m t B y                       Bài 52.Viết phương trình đường tròn đi qua hai điểm A(2; 5), B(4;1) và tiếp xúc với đường thẳng có phương trình 3x – y + 9 = 0. Hướng dẫn: Gọi M là trung điểm AB suy ra M(3;3 ) . d’ là đường trung trực của AB thì d’ có phương trình : 1.(x-3)- 2(y-3)=0 , hay : x-2y+3=0 . – Tâm I của (C) nằm trên đường thẳng d’ cho nên I(2t-3;t) (*) – Nếu (C) tiếp xúc với d thì    3 2 3 9 5 10 , 210 10 t t t h I d R t R         . (1) – Mặt khác : R=IA=     2 2 5 2 5t t   . (2) . – Thay (2) vào (1) :      2 2 2 210 5 2 5 4 5 30 50 10 2 t t t t t t        2 6 34 12 2 0 6 34 t t t t            . Thay các giá trị t vào (*) và (1) ta tìm được tọa độ tâm I và bán kính R của (C) . * Chú ý : Ta có thể sử dụng phương trình (C) : 2 2 2 2 0x y ax by c     ( có 3 ẩn a,b,c) – Cho qua A,B ta tạo ra 2 phương trình . Còn phương trình thứ 3 sử dụng điều kiện tiếp xúc của (C) và d : khoảng cách từ tâm tới d bằng bán kính R .
    17. 22. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 22 Jun . 17 Bài chúng tôi đường tròn (C): x2 + y2 – 2x + 4y + 2 = 0. Viết phương trình đường tròn (C’) tâm M(5, 1) biết (C’) ắt (C) tại các điểm A, B sao cho 3AB . Hướng dẫn:- Đường tròn (C) :       2 2 1 2 3 1; 2 , 3x y I R       . – Gọi H là giao của AB với (IM). Do đường tròn (C’) tâm M có bán kính R’ = MA . Nếu AB= 3 IA R  , thì tam giác IAB là tam giác đều , cho nên IH= 3. 3 3 2 2  ( đường cao tam giác đều ) . Mặt khác : IM=5 suy ra HM= 3 7 5 2 2   . – Trong tam giác vuông HAM ta có 2 2 2 249 3 13 ‘ 4 4 4 AB MA IH R      – Vậy (C’) :     2 2 5 1 13x y    . Bài 54.Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®-êng trßn (C) cã ph-¬ng tr×nh (x-1)2 + (y+2)2 = 9 vµ ®-êng th¼ng d: x + y + m = 0. T×m m ®Ó trªn ®-êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®-îc hai tiÕp tuyÕn AB, AC tíi ®-êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu”ng. Hướng dẫn: – (C) có I(1;-2) và bán kính R=3 . Nếu tam giác ABC vuông góc tại A ( có nghĩa là từ A kẻ được 2 tiếp tuyến tới (C) và 2 tiếp tuyến vuông góc với nhau ) khi đó ABIC là hình vuông . Theo tính chất hình vuông ta có IA= IB 2 (1) . – Nếu A nằm trên d thì A( t;-m-t ) suy ra :     2 2 1 2IA t t m     . Thay vào (1) :     2 2 1 2 3 2t t m       2 2 2 2 1 4 13 0t m t m m       (2). Để trên d có đúng 1 điểm A thì (2) có đúng 1 nghiệm t , từ đó ta có điều kiện :     22 10 25 0 5 0 5m m m m             .Khi đó (2) có nghiệm kép là :  1 2 0 1 5 1 3 3;8 2 2 m t t t A            Bài 55.Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x – 3y – 12 = 0 và (d2): 4x + 3y – 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. Hướng dẫn:- Gọi A là giao của  1 2 4 3 12 0 , : 3;0 Ox 4 3 12 0 x y d d A A x y          – Vì (BC) thuộc Oy cho nên gọi B là giao của 1d với Oy : cho x=0 suy ra y=-4 , B(0;-4) và C là giao của 2d với Oy : C(0;4 ) . Chứng tỏ B,C đối xứng nhau qua Ox , mặt khác A nằm trên Ox vì vậy tam giác ABC là tam giác cân đỉnh A . Do đó tâm I đường tròn nội tiếp tam giác thuộc Ox suy ra I(a;0). – Theo tính chất phân giác trong : 5 5 4 9 4 4 4 IA AC IA IO OA IO AO IO IO         4 4.3 4 9 9 3 OA IO    . Có nghĩa là I( 4 ;0 3 ) I M A B H I(1;-2) B C A x+y+m=0
    18. 23. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 23 Jun . 17 – Tính r bằng cách :    5 8 51 1 15 1 1 18 6 . .5.3 2 2 2 2 2 15 5 AB BC CA S BC OA r r r             . Bài 56.Trong mặt phẳng toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : :3 4 4 0x y    . Tìm trên  hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15 Hướng dẫn:- Nhận xét I thuộc  , suy ra A thuộc  : A(4t;1+3t) . Nếu B đối xứng với A qua I thì B có tọa độ B(4-4t;4+3t)     2 2 16 1 2 9 1 2 51 2AB t t t       – Khoảng cách từ C(2;-5) đến  bằng chiều cao của tam giác ABC : 6 20 4 6 5     – Từ giả thiết :         0 0;1 , 4;41 1 . 5.1 2 .6 15 1 2 1 2 2 1 4;4 , 0;1 t A B S AB h t t t A B              Bài 57.Trong mặt phẳng với hệ toạ độ Oxy cho elíp 2 2 ( ): 1 9 4 x y E   và hai điểm A(3;-2) , B(-3;2) Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. Hướng dẫn:- A,B có hoành độ là hoành độ của 2 đỉnh của 2 bán trục lớn của (E) , chúng nằm trên đường thẳng y-2=0 . C có hoành độ và tung độ dương thì C nằm trên cung phần tư thứ nhất – Tam giác ABC có AB=6 cố định . Vì thế tam giác có diện tích lớn nhất khi khoảng cách từ C đến AB lớn nhất . – Dễ nhận thấy C trùng với đỉnh của bán trục lớn (3;0) Bài 58.Trong mÆt ph¼ng Oxy cho tam gi¸c ABC biÕt A(2; – 3), B(3; – 2), cã diÖn tÝch b”ng 3 2 vµ träng t©m thuéc ®-êng th¼ng  : 3x – y – 8 = 0. T×m täa ®é ®Ønh C. Hướng dẫn:- Do G thuộc  suy ra G(t;3t-8). (AB) qua A(2;-3) có véc tơ chỉ phương  1;1u AB    , cho nên (AB) : 2 3 5 0 1 1 x y x y        . Gọi M là trung điểm của AB : M 5 5 ; 2 2       . – Ta có : 5 5 5 11 ; 3 8 ; 3 2 2 2 2 GM t t t t                     . Giả sử C 0 0;x y , theo tính chất trọng tâm ta có :    0 0 0 0 5 2 5 22 2 2 5;9 19 1 9 1911 3 8 2 3 2 x t t x t GC GM C t t y t y t t                                    – Ngoài ra ta còn có : AB= 2 ,      3 2 5 9 19 8 4 3 , 10 10 t t t h C         – Theo giả thiết :   4 31 1 3 . , 2 2 4 3 3 10 2 2 210 t S AB h C t           2 2 4 3 5 7 6 5 ; 7 9 5 3 3 2 4 3 90 9 24 29 0 4 3 5 6 5 7 ;9 5 7 3 3 t C t t t t C                                    Bài 59.Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 1 ( ;0) 2 I
    19. 24. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 24 Jun . 17 Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó Hướng dẫn:- Do A thuộc (AB) suy ra A(2t-2;t) ( do A có hoành độ âm cho nên t<1) – Do ABCD là hình chữ nhật suy ra C đối xứng với A qua I : C 3 2 ;t t  . – Gọi d’ là đường thẳng qua I và vuông góc với (AB), cắt (AB) tại H thì : 1 ‘: 2 2 x t d y t        , và H có tọa độ là H 0;1 . Mặt khác B đối xứng với A qua H suy ra B 2 2 ;2t t  . – Từ giả thiết : AB=2AD suy ra AH=AD , hay AH=2IH     2 2 1 2 2 1 2 1 4 t t        22 1 1 05 5 10 5 4. 1 1 1 1 2 14 t t t t t t t                    – Vậy khi t =         1 2;0 , 2;2 , 3;0 , 1; 2 2 A B C D    . * Chú ý : Ta còn có cách giải khác nhanh hơn – Tính   1 0 2 52 ; 25 h I AB     , suy ra AD=2 h(I,AB)= 5 – Mặt khác :     2 2 2 2 2 2 22 5 25 5 4 4 4 4 AB AD IA IH IH IH AD         IA=IB = 5 2 -Do đó A,B là giao của (C) tâm I bán kính IA cắt (AB) . Vậy A,B có tọa độ là nghiệm của hệ :    2 2 2 2 2 0 2;0 , 2;21 5 2 2 x y A B x y                    (Do A có hoành độ âm – Theo tính chất hình chữ nhật suy ra tọa độ của các đỉnh còn lại : C(3;0) và D(-1;-2) Bài 60.Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao : 1 0CH x y   , phân giác trong :2 5 0BN x y   .Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC Hướng dẫn:- Đường (AB) qua A(1;-2) và vuông góc với (CH) suy ra (AB): 1 2 x t y t       . – (AB) cắt (BN) tại B: 1 2 5 2 5 0 x t y t t x y               Do đó B(-4;3).Ta có : 1 2 1 1, 2 tan 1 2 3 AB BNk k            – Gọi A’ đối xứng với A qua phân giác (BN) thì A’ nằm trên (AB). Khi đó A’ nằm trên d vuông góc với (BN) 1 2 : 2 x t d y t        C H B N A(1;-2) x-y+1=0 2x+y+5=0
    20. 25. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 25 Jun . 17 – d cắt (BN) tại H :   1 2 : 2 1 1; 3 2 5 0 x t H y t t H x y                  . – A’ đối xứng với A qua H suy ra A'(-3;-4) . (BC) qua B,A’ suy ra :  1; 7u      4 : 3 7 x t BC y t        . (BC) cắt (CH) tại C: 4 3 13 9 3 7 ; 4 4 4 1 0 x t y t t C x y                      – Tính diện tích tam giác ABC : – Ta có :   2 5 1 1 9 9 10 . ( , ) .2 59 2 2 4, 2 2 2 2 ABC AB S AB h C AB h C AB          Bài 61.Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD, có diện tích bằng 12, tâm I là giao điểm của đường thẳng 03:1  yxd và 06:2  yxd . Trung điểm của một cạnh là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Theo giả thiết , tọa độ tâm I 3 0 9 3 ; 6 0 2 2 x y I x y              . Gọi M là trung điểm của AD thì M có tọa độ là giao của : x-y-3=0 với Ox suy ra M(3;0). Nhận xét rằng : IM // AB và DC , nói một cách khác AB và CD nằm trên 2 đường thẳng // với 1d ( có  1; 1n    . -A,D nằm trên đường thẳng d vuông góc với 1d 3 : x t d y t       . Giả sử A  3 ;t t  (1), thì do D đối xứng với A qua M suy ra D(3-t;t) (2) . – C đối xứng với A qua I cho nên C(6-t;3+t) (3) . B đối xứng với D qua I suy ra B( 12+t;3-t).(4) – Gọi J là trung điểm của BC thì J đối xứng với M qua I cho nên J(6;3). Do đó ta có kết quả là : : 3 2MJ AB AD   . Khoảng cách từ A tới 1d :    1 1 2 , 2 , . 2 ABCD t h A d S h A d MJ   12 2 3 2 12 12 12 ABCD tt S t t          . Thay các giá trị của t vào (1),(2),(3),(4) ta tìm được các đỉnh của hình chữ nhật :                 1 3;1 , 4; 1 , 7;2 , 11;4 1 4; 1 , 2;1 , 5;4 , 13;2 t A D C B t A D C B          Bài 62.Trong mặt phẳng với hệ tọa độ Oxy, cho hypebol (H): và điểm M(2; 1). Viết phương trình đường thẳng d đi qua M, biết rằng đường thẳng đó cắt (H) tại hai điểm A, B mà M là trung điểm của AB Hướng dẫn:- Giải sử d có véc tơ chỉ phương  ;u a b  , qua M(2;1) 2 : 1 x at d y bt       – d cắt (H) tại 2 điểm A,B thì A,B có tọa độ :     2 2 2 2 2 2 1 1 1 2 3 1 2 3 x at at bt y bt x y                   2 2 x y 1 2 3  
    21. 26. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 26 Jun . 17         2 2 2 2 2 3 2 2 2 6 3 2 4 3 4 0(1)at bt a b t a b t           – Điều kiện :     2 2 2 2 2 3 2 0 ‘ 4 3 4 3 2 0 a b a b a b            (*). Khi đó  1 12 ;1 ,A at bt  và tọa độ của B :  2 22 ;1B at bt  , suy ra nếu M là trung điểm của AB thì : 4+a  1 2 1 24 0t t t t     – Kết hợp với 2 1 2 1 2 2 22 2 2 3 2 3 4 4 2 3 2 2 3 2 3 t t t t t t a b b a b a             – Áp dụng vi ét cho (1) :   1 2 2 2 4 3 2 1 2 1 0 3 : 3 2 3 b a x y x y t t b a d a b a b a a                – Vậy d : 3(x-2)=(y-1) hay d : 3x-y-5=0 . Bài 63.Trong mặt phẳng Oxy , cho đường thẳng  có phương trình x+2y-3=0 và hai điểm A(1;0),B(3;-4). Hãy tìm trên đường thẳng  một điểm M sao cho : 3MA MB   là nhỏ nhất Hướng dẫn:- D M  3 2 ;M t t   có nên ta có :    2 2; ,3 6 ; 3 12MA t t MB t t        . Suy ra tọa độ của       2 2 3 8 ; 4 14 3 8 4 14MA MB t t MA MB t t             . – Vậy : f(t) =     2 2 2 8 4 14 80 112 196t t t t     . Xét g(t)= 2 80 112 196t t  , tính đạo hàm g'(t)= 160t+112. g'(t)=0 khi 112 51 51 15.169 196 80 80 80 80 t g              – Vậy min 3 196 14MA MB     , đạt được khi t= 51 80  và 131 51 ; 40 80 M        Bài 64.Trong mặt phẳng Oxy , cho hai đường tròn :   2 2 1 : 13C x y  và     2 2 2 : 6 25C x y   cắt nhau tại A(2;3).Viết phương trình đường thẳng đi qua A và cắt    1 2,C C theo hai dây cung có độ dài bằng nhau Hướng dẫn: – Từ giả thiết :        1 2: 0;0 , 13. ; 6;0 , ‘ 5C I R C J R   – Gọi đường thẳng d qua A(2;3) có véc tơ chỉ phương   2 ; : 3 x at u a b d y bt         – d cắt  1C tại A, B :    2 2 2 2 2 2 2 2 2 3 3 2 2 3 0 13 x at a b y bt a b t a b t t a b x y                          2 2 2 2 2 3 3 2 ; b b a a a b B a b a b          . Tương tự d cắt  2C tại A,C thì tọa độ của A,C là nghiệm của hệ :     2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 10 6 2 3 8 3 3 ; 6 25 x at a b a ab b a ab b y bt t C a b a b a b x y                          – Nếu 2 dây cung bằng nhau thì A là trung điểm của A,C . Từ đó ta có phương trình :
    22. 27. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 27 Jun . 17     2 2 2 2 2 2 2 2 2 0 ; : 2 3 310 6 2 4 6 9 0 3 3 ; // ‘ 3;2 2 2 x a d b ab y ta ab b a ab a b a b a b u b b u                              Suy ra : 2 3 : 3 2 x t d y t       . Vậy có 2 đường thẳng : d: x-2=0 và d’: 2x-3y+5=0 Bài 65.Trong mặt phẳng Oxy , cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình x+y+1=0 trung tuyến từ đỉnh C có phương trình : 2x-y-2=0 . Viết phường trình đường tròn ngoại tiếp tam giác ABC Hướng dẫn:- Đường thẳng d qua A(3;0) và vuông góc với (BH) cho nên có véc tơ chỉ phương  1;1u   do đó d : 3x t y t     . Đường thẳng d cắt (CK) tại C :   3 4 1; 4 2 2 0 x t y t t C x y               – Vì K thuộc (CK) : K(t;2t-2) và K là trung điểm của AB cho nên B đối xứng với A qua K suy ra B(2t- 3;4t- 4) . Mặt khác K lại thuộc (BH) cho nên : (2t- 3)+(4t-4)+1=0 suy ra t=1 và tạo độ B(-1;0) . Gọi (C) :  2 2 2 2 2 2 2 0 0x y ax by c a b c R         là đường tròn ngoại tiếp tam giác ABC . Cho (C) qua lần lượt A,B,C ta được hệ : 1 9 6 0 2 4 4 0 0 5 2 8 0 6 a a c a c b a b c c                     – Vậy (C) : 2 21 25 2 4 x y         Bài 66.Trong mặt phẳng Oxy , cho tam giác ABC biết A(1;-1) ,B(2;1), diện tích bằng 11 2 và trọng tâm G thuộc đường thẳng d : 3x+y-4=0 . Tìm tọa độ đỉnh C ? Hướng dẫn:- Nếu G thuộc d thì G(t;4-3t). Gọi C( 0 0; )x y . Theo tính chất trọng tâm : 0 0 0 0 1 2 3 33 12 9 4 3 3 x t x t y y t t             Do đó C(3t-3;12-9t). -Ta có :   2 1 1 ( ): 2 3 0 1 21;2 1 2 5 x y AB x y AB AB                B C K H A(3;0) x+y+1=0 2x-y-2=0
    23. 28. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 28 Jun . 17 – h(C,AB)=    2 3 3 12 9 3 15 21 5 5 t t t      . Do đó :   1 . , 2 ABCS AB h C AB    32 17 2632 ; 15 21 15 211 11 15 5 515 5 15 21 11 202 2 25 4 1;0 15 3 t Ct t t S t t t C                         Bài 67.Trong mặt phẳng Oxy , cho hình vuông có đỉnh (-4;5) và một đường chéo có phương trình : 7x- y+8=0 . Viết phương trình chính tắc các cạnh hình vuông Hướng dẫn:- Gọi A(-4;8) thì đường chéo (BD): 7x-y+8=0. Giả sử B(t;7t+8) thuộc (BD). – Đường chéo (AC) qua A(-4;8) và vuông góc với (BD) cho nên có véc tơ chỉ phương     4 7 4 5 7; 1 : 7 39 0 5 7 1 x t x y u AC x y y t                  . Gọi I là giao của (AC) và (BD) thì tọa độ của I là nghiệm của hệ :   4 7 1 1 9 5 ; 3;4 2 2 2 7 8 0 x t y t t I C x y                     – Từ B(t;7t+8) suy ra :    4;7 3 , 3;7 4BA t t BC t t        . Để là hình vuông thì BA=BC : Và BAvuông góc với BC       2 0 4 3 7 3 7 4 0 50 50 0 1 t t t t t t t t                    0 0;8 1 1;1 t B t B         . Tìm tọa độ của D đối xứng với B qua I         0;8 1;1 1;1 0;8 B D B D       – Từ đó : (AB) qua A(-4;5) có     4 5 4;3 : 4 3 AB x y u AB       (AD) qua A(-4;5) có     4 5 3; 4 : 3 4 AD x y u AB         (BC) qua B(0;8) có     8 3; 4 : 3 4 BC x y u BC        (DC) qua D(-1;1) có     1 1 4;3 : 4 3 DC x y u DC       * Chú ý : Ta còn cách giải khác – (BD) : 7 8y x  , (AC) có hệ số góc 1 7 k   và qua A(-4;5) suy ra (AC): 31 7 7 x y   . -Gọi I là tâm hình vuông :   2 2 3;47 8 31 7 7 A C I A C I I I C C x x x y y y Cy x x y                – Gọi (AD) có véc tơ chỉ phương       0 ; , : 1;7 7 os45u a b BD v a b uv u v c           2 2 7 5a b a b    . Chọn a=1, suy ra     3 3 3 : 4 5 8 4 4 4 b AD y x x      
    24. 29. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 29 Jun . 17 Tương tự :         4 4 1 3 3 7 : 4 5 , : 3 4 3 3 3 4 4 4 AB y x x BC y x x            và đường thẳng (DC):   4 4 3 4 8 3 3 y x x       Bài 68.Trong mặt phẳng với hệ tọa độ Oxy, cho điểm E(-1;0) và đường tròn ( C ): x2 + y2 – 8x – 4y – 16 = 0. Viết phương trình đường thẳng đi qua điểm E cắt ( C ) theo dây cung MN có độ dài ngắn nhất. Hướng dẫn:-         2 2 : 4 2 36 4;2 , 6C x y I R      – Nhận xét : P/(M,C)=1+8-16=-7<0 suy ra E nằm trong (C) – Gọi d là đường thẳng qua E(-1;0) có véc tơ chỉ phương   1 ; : x at u a b d y bt         – Đường thẳng d cắt (C) tại 2 điểm M,N có tọa độ là nghiệm của hệ :        2 2 2 2 2 1 2 5 2 7 0 4 2 36 x at y bt a b t a b t x y                   . (1) – Gọi M(-1+at;bt),N( -1+at’;bt’) với t và t’ là 2 nghiệm của (1). Khi đó độ dài của dây cung MN     2 2 2 22 2 2 2 2 2 2 2 2 2 2 ‘ 2 18 20 11 ‘ ‘ ‘ a ab b a t t b t t t t a b a b a b a b                – 2 2 2 2 18 20 11 18 20 11 2 2 1 1 b b t t ba a t t ab a                            . Xét hàm số f(t)= 2 2 18 20 11 1 t t t    – Tính đạo hàm f'(t) cho bằng 0 , lập bảng biến thiên suy ra GTLN của t , từ đó suy ra t ( tức là suy ra tỷ số a/b ) ). Tuy nhiên cách này dài * Chú ý : Ta sử dụng tính chất dây cung ở lớp 9 : Khoảng cách từ tâm đến dây cung càng nhỏ thì dây cung càng lớn – Gọi H là hình chiếu vuông góc của I trên đường thẳng d bất kỳ qua E(-1;0). Xét tam giác vuông HIE ( I là đỉnh ) ta luôn có : 2 2 2 2 IH IE HE IE IH IE     . Do đó IH lớn nhất khi HE=0 có nghĩa là H trùng với E . Khi đó d cắt (C) theo dây cung nhỏ nhất . Lúc này d là đường thẳng qua E và vuông góc với IE cho nên d có véc tơ pháp tuyến  5;2n IE    , do vậy d: 5(x+1)+2y=0 hay : 5x+2y+5=0 . Bài chúng tôi tam giác ABC cân tại A, biết phương trình đường thẳng AB, BC lần lượt là: x + 2y – 5 = 0 và 3x – y + 7 = 0. Viết phương trình đường thẳng AC, biết rằng AC đi qua điểm F(1; – 3). Hướng dẫn:- Ta thấy B là giao của (AB) và (BC) cho nên tọa độ B là nghiệm của hệ : 9 2 5 0 7 3 7 0 22 7 x x y x y y                9 22 ; 7 7 B         . Đường thẳng d’ qua A vuông góc với (BC) có     1 3; 1 1;3 3 u n k         . (AB) có A B C x+2y-5=0 3x-y+7=0 F(1;-3)
    25. 30. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 30 Jun . 17 1 2 ABk   . Gọi (AC) có hệ số góc là k ta có phương trình : 11 1 1 15 5 33 11 82 3 3 15 5 3 1 1 15 5 3 45 31 1 2 3 3 7 kk k kk k k k k kk k                             – Với k=-     1 1 : 1 3 8 23 0 8 8 AC y x x y         – Với k=     4 4 : 1 3 4 7 25 0 7 7 AC y x x y         Bài 70.Trong mặt phẳng Oxy, hãy xác định tọa độ các đỉnh của tam giác ABC vuông cân tại A. Biết rằng cạnh huyền nằm trên đường thẳng d: x + 7y – 31 = 0, điểm N(7;7) thuộc đường thẳng AC, điểm M(2;-3) thuộc AB và nằm ngoài đoạn AB Hướng dẫn:- Gọi A     0 0 0 0 0 0; 2; 3 , 7; 7x y MA x y NA x y         . – Do A là đỉnh của tam giác vuông cân cho nên AM vuông góc với AN hay ta có :       2 2 0 0 0 0 0 0 0 0. 0 2 7 3 7 0 9 4 7 0MA NA x x y y x y x y                – Do đó A nằm trên đường tròn (C) :     2 2 0 03 2 20x y    – Đường tròn (C) cắt d tại 2 điểm B,C có tọa độ là nghiệm của hệ phương trình :         2 2 2 2 2 31 7 31 73 2 20 50 396 768 028 7 2 207 31 0 x y x yx y y yy yx y                          – Do đó ta tìm được : 198 2 201 99 201 99 201 ; 50 25 25 y y       , tương ứng ta tìm được các giá trị của x : 82 7 201 82 7 201 ; 25 25 x x     . Vậy : 82 7 201 99 201 ; 25 25 A         và tọa độ của điểm 82 7 201 99 201 ; 25 25 A         Bài 71. Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d1 và 2d Hướng dẫn:- Tìm tọa độ A là nghiệm của hệ :   2 5 0 11 11;17 3 2 1 0 17 x y x A x y y                – Nếu C thuộc    1 2; 2 5 , 1 2 ; 1 3d C t t B d B m m        – Theo tính chất trọng tâm của tam giác ABC khi G là trọng tâm thì : 2 10 1 2 133 11 2 3 2 3 2 3 3 t m t m t m t m                13 2 13 2 35 2 13 2 3 2 24 24 t m t m t m m m m                    – Vậy ta tìm được : C(-35;65) và B( 49;-53). A B C G M 2x+y+5=0 3x+2y-1=0
    26. 31. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 31 Jun . 17 Bài 72.Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y – 15 = 0. Tìm tọa độ điểm M trên đường thẳng d: 3x – 22y – 6 = 0, sao cho từ điểm M kẻ được tới (C) hai tiếp tuyến MA, MB (A, B là các tiếp điểm) mà đường thẳng AB đi qua điểm C (0;1). Hướng dẫn:- (C) :     2 2 3 1 25x y    , có I(3;-1) và R=5 . – Gọi    1 1 2 2; , ;A x y B x y là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M . – Gọi M 0 0 0 0; 3 22 6 0 (*)x y d x y     – Hai tiếp tuyến của (C) tại A,B có phương trình là : –        1 13 3 1 1 25 1x x y y      và : –        2 23 3 1 1 25 2x x y y      – Để 2 tiếp tuyến trở thành 2 tiếp tuyến kẻ từ M thì 2 tiếp tuyến phải đi qua M ; –        1 0 1 03 3 1 1 25 3x x y y      và –        2 0 2 03 3 1 1 25 4x x y y      Từ (3) và (4) chứng tỏ (AB) có phương trình là :        0 03 3 1 1 25 5x x y y      – Theo giả thiết thì (AB) qua C(0;1) suy ra :    0 0 0 03 3 2 1 25 3 2 14 0(6)x y x y          – Kết hợp với (*) ta có hệ : 0 0 0 0 0 0 1 3 22 6 0 16 ; 116 3 2 14 0 3 3 y x y M x y x                        Bài 73.Trong mặt phẳng Oxy : Cho hai điểm A(2 ; 1), B( – 1 ; – 3) và hai đường thẳng d1: x + y + 3 = 0; d2 : x – 5y – 16 = 0. Tìm tọa độ các điểm C,D lần lượt thuộc d1 và d2 sao cho tứ giác ABCD là hình bình hành. Hướng dẫn:- Trường hợp : Nếu AB là một đường chéo +/ Gọi I( 1 ; 1 2       , đường thẳng qua I có hệ số góc k suy ra d: y=k(x-1/2)-1 +/ Đường thẳng d cắt 1d tại C     4 1 2 11 2 7 2 3 0 2 1 k x ky k x k yx y k                          4 7 2 ; 2 1 2 1 k k C k k          . Tương tự d cắt 2d tại B : 1 1 2 5 16 0 y k x x y               – Từ đó suy ra tọa độ của B . Để ABCD là hình bình hành thì : AB=CD .Sẽ tìm được k * Cách khác : – Gọi C(t;-t-3) thuộc 1d , tìm B đối xứng với C qua I suy ra D (1-t;t+1) – Để thỏa mãn ABCD là hình bình hành thì D phải thuộc 2d :  1 5 1 16 0t t      Suy ra t=- 10 3 và D 13 7 ; 3 3       và C 10 1 ; 3 3       chúng tôi – Trường hợp AB là một cạnh của hình bình hành . +/ Chọn C (t;-t-3) thuộc 1d và D (5m+16;m) thuộc 2d M A B I(3;-1) H C(0;1) 3x-22y-6=0
    27. 32. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 32 Jun . 17 +/ Để ABCD là hình bình hành thì : AC=BD AB //CD    +/ Ta có :                 2 2 2 2 2 2 2 22 4 5 17 3 2 4 5 17 3 5 16 3 17 7 55 0 3 4 t t m m t t m m m t m t m t                              2 2 2 13 88 89 0 17 55 7 t t m m m t             . Giải hệ này ta tìm được m và t , thay vào tọa độ của C và D Bài 74.Trong mặt phẳng tọa độ độ Oxy, cho tam giác ABC có C(1;2), hai đường cao xuất phát từ A và B lần lượt có phương trình là x + y = 0 và 2x – y + 1 = 0. Tính diện tích tam giác ABC. Hướng dẫn:- (AC) qua C(1;2) và vuông góc với đường cao BK cho nên có :     1 2 2; 1 : 2 5 0 2 1 x y u AC x y             – (AC) cắt (AH) tại A : 3 2 1 0 3 11 55 ; 2 5 0 11 5 5 5 5 x x y A AC x y y                      – (BC) qua C(1;2) và vuông góc với (AH) suy ra     1 1;1 : 2 BC x t u BC y t         – (BC) cắt đường cao (AH) tại B 1 3 1 1 2 ; 2 2 2 0 x t y t t B x y                    – Khoảng cách từ B đến (AC) : 1 1 5 9 1 5 9 92 . 2 5 205 2 5 2 5 S        Bài 75.Trong mặt phẳng Oxy, cho hai điểm 1F ( – 4; 0), 2F ( 4;0) và điểm A(0;3). a) Lập phương trình chính tắc của elip (E) đi qua điểm A và có hai tiêu điểm 1F , 2F . b) Tìm tọa độ của điểm M thuộc (E) sao cho M 1F = 3M 12F Hướng dẫn:- Giả sử (E) : 2 2 2 2 1 x y a b   (1) . Theo giả thiết thì : c=4  2 2 2 16 2c a b    – (E) qua A(0;3) suy ra : 2 2 9 1 9b b    , thay vào (2) ta có   2 2 2 25 : 1 25 9 x y a E    – M thuộc (E)     2 2 0 0 0 0; 1 2 25 9 x y M x y    . Theo tính chất của (E) ta có bán kính qua tiêu 1 0 2 0 1 2 0 0 0 4 4 4 4 25 5 , 5 3 5 3 5 5 5 5 5 8 MF x MF x MF MF x x x                  . Thay vào (2) ta có 2 0 02 551 551 8 8 y y    Bài 76.Trong mp Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y + 6 = 0 và điểm P(1;3). a.Viết phương trình các tiếp tuyến PE, PF của đường tròn (C), với E, F là các tiếp điểm. b.Tính diện tích tam giác PEF.
    28. 33. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 33 Jun . 17 Hướng dẫn:- (C):       2 2 3 1 4 3; 1 , 2x y I R       – Giả sử đường thẳng qua P có véc tơ pháp tuyến      ; : 1 3 0n a b d a x b y      Hay : ax+by-(a+3b)=0 (*). – Để d là tiếp tuyến của (C) thì khoảng cách từ tâm I đến d bằng bán kính : 2 2 2 2 3 3 2 4 2 2 a b a b a b a b a b             2 2 2 2 2 4 3 0a b a b ab b               0 1 0 1 0 4 3 0 4 4 1 3 0 3 4 6 0 3 3 b a x x b a b b a a x a y x y                        -Ta có : PI=2 5 , PE=PF= 2 2 20 4 4PI R    . Tam giác IEP đồng dạng với IHF suy ra : IF 2 5 IF 2 4 5 , IH 2 5 5 5 5 EP IP EP IH EH EH IE          2 8 1 1 8 8 32 2 5 chúng tôi 2 2 55 5 5 5 EPFPH PI IH S         Bài 77.Trong mpOxy, cho 2 đường thẳng d1: 2x + y  1 = 0, d2: 2x  y + 2 = 0. Viết pt đường tròn (C) có tâm nằm trên trục Ox đồng thời tiếp xúc với d1 và d2. Hướng dẫn:- Gọi I(a;0) thuộc Ox . Nếu (C) tiếp xúc với 2 đường thẳng thì :       1 2 1 , , , h I d h I d h I d R        2 1 2 2 1 5 5 2 1 2 5 a a a R           . Từ (1) : a= 1 4 , thay vào (2) : R=   2 25 1 5 : 10 4 100 C x y          Bài 78.Trong mpOxy, cho 2 đường thẳng d1: 2x  3y + 1 = 0, d2: 4x + y  5 = 0. Gọi A là giao điểm của d1 và d2. Tìm điểm B trên d1 và điểm C trên d2 sao cho ABC có trọng tâm G(3; 5). Hướng dẫn:- Tọa độ A là nghiệm của hệ : 2 3 1 0 7 3 ; 4 5 0 8 2 x y A x y             –    1 21 2 ;1 3 , ;5 4B d B t t C d C m m       . Tam giác ABC nhận G(3;5) làm trọng tâm : 7 57 1 2 9 2 8 8 3 15 1 3 5 4 15 3 4 2 2 t m t m t m t m                          I(3;-1)E F P(1;3) O x y H
    29. 34. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 34 Jun . 17 Giải hệ trên suy ra : 31 67 88 ; 5 5 5 207 207 257 ; 40 40 10 t B m C                     Bài chúng tôi đường tròn (C): x2 + y2  2x  4y + 3 = 0. Lập pt đường tròn (C’) đối xứng với (C) qua đường thẳng : x  2 = 0 Hướng dẫn:Ta có (C):       2 2 1 2 2 1;2 , 2x y I R      – Gọi J là tâm của (C’) thì I và J đối xứng nhau qua d : x=2 suy ra J(3;2) và (C) có cùng bán kính R . Vậy (C’):     2 2 3 2 2x y    đối xứng với (C) qua d . Bài 80.Trong mpOxy, cho ABC có trục tâm H 13 13 ; 5 5       , pt các đường thẳng AB và AC lần lượt là: 4x  y  3 = 0, x + y  7 = 0. Viết pt đường thẳng chứa cạnh BC. Hướng dẫn:- Tọa độ A là nghiệm của hệ : 4 3 0 7 0 x y x y        Suy ra : A(2;5).   3 12 ; // 1; 4 5 5 HA u            . Suy ra (AH) có véc tơ chỉ phương  1; 4u   . (BC) vuông góc với (AH) cho nên (BC) có  1; 4n u    suy ra (BC): x- 4y+m=0 (*). – C thuộc (AC) suy ra C(t;7-t ) và   13 22 ; 1;4 5 5 ABCH t t u CH               . Cho nên ta có :   13 22 4 0 5 5;2 5 5 t t t C             . – Vậy (BC) qua C(5;2) có véc tơ pháp tuyến        1; 4 : 5 4 2 0n BC x y        (BC): 4 3 0x y    Bài 81.Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x + y  3 = 0 và 2 điểm A(1; 1), B(3; 4). Tìm tọa độ điểm M thuộc đường thẳng d sao cho khoảng cách từ M đến đường thẳng AB bằng 1. Hướng dẫn:- M thuộc d suy ra M(t;3-t) . Đường thẳng (AB) qua A(1;1) và có véc tơ chỉ phương     1 1 4; 3 : 3 4 4 0 4 3 x y u AB x y             – Theo đầu bài :  3 4 3 4 1 8 5 5 t t t             3 3;0 13 13; 10 t M t M        * Chú ý : Đường thẳng d’ song song với (AB) có dạng : 3x+4y+m=0 . Nếu d’ cách (AB) một khoảng bằng 1 thì h(A,d’)=1 3 4 1 5 m    2 ‘:3 4 2 0 12 ‘:3 4 12 0 m d x y m d x y               . Tìm giao của d’ với d ta tìm được M . Bài 82.Trong mặt phẳng với hệ tọa độ Oxy, cho ABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x  y + 11 = 0, x + y  1 = 0. Tìm tọa độ các đỉnh B, C A(2;5) B C E K H 4x-y-3=0 x+y-7=0
    30. 35. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 35 Jun . 17 Hướng dẫn:Đường thẳng (AC) qua A(4;3) và vuông góc với (BH) suy ra (AC) : 4 3 3 x t y t      (AC) cắt trung tuyến (CM) tại C :   4 3 3 2 6 0 3 5;6 1 0 x t y t t t C x y                  – B thuộc (BH) suy ra B(t;3t+11 ). Do (CM) là trung tuyến cho nên M là trung điểm của AB , đồng thời M thuộc (CM) . 4 3 14 ; 2 2 t t M           4 3 14 1 0 4 2 2 t t M CM t           . Do đó tọa độ của B(-4;-1) và M(0;1 ). Bài 83.Trong mpOxy, cho elip (E): 2 2 1 8 4 x y   và đường thẳng d: x  2 y + 2 = 0. Đường thẳng d cắt elip (E) tại 2 điểm B, C. Tìm điểm A trên elip (E) sao cho ABC có diện tích lớn nhất. Hướng dẫn:-Do đường thẳng d cố định cho nên B,C cố định , có nghĩa là cạnh đáy BC của tam giác ABC cố định . – Diện tích tam giác lớn nhất khi khoảng cách từ A ( trên E) là lớn nhất – Phương trình tham số của (E) :  2 2 sin 2 2 sin ;2cos 2cos x t A t t y t      – Ta có :   2 2 sin 2 2 ost+2 , 3 t c h A d      4sin2 2 sin ost 4 4 3 3 3 xt c          . Dấu đẳng thức chỉ xảy ra khi sin 1 4 x        . sin 1 2 2 2, 2 4 4 2 4 3 2 2 2, 2sin 1 4 2 44 x x k x k x y x k x k x yx                                                         Nhận xét : Thay tọa độ 2 điểm A tìm được ta thấy điểm  2; 2A  thỏa mãn . B H C M A(4;3) 3x-y+11=0 x+y-1=0 2 2-2 2 2 y x O -2 2 x- 2 y+2=0 B CA -2 2 A

    --- Bài cũ hơn ---

  • Phép Quay Và Phép Vị Tự Lớp 11
  • 20 Câu Trắc Nghiệm: Phép Vị Tự Có Đáp Án (Phần 1).
  • Mama 2022 Tại Nhật Và Bộ Sưu Tập Những Khoảnh Khắc “mặn Mà” Của Bts
  • Bts Và Sức Công Phá Không Tưởng Tại Mama 2022
  • Kết Quả Mama 2022 Tại Hồng Kông: Bts Giật Daesang Kép, Twice Khóc Cạn Nước Mắt Khi 3 Năm Liên Tiếp Thắng Giải Daesang Bài Hát Của Năm!
  • Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải

    --- Bài mới hơn ---

  • Lý Thuyết Toán Lớp 6
  • Các Dạng Toán Lớp 6 Và Phương Pháp Giải
  • Giải Bài Tập Ngữ Văn Lớp 6 Bài 11: Cụm Danh Từ
  • Những Bài Toán Nổi Tiếng Hóc Búa Trên Thế Giới
  • Đáp Án Sách Lưu Hoằng Trí Lớp 6
  • A. Lý thuyết 1. Tập hợp

    Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.

    Ví dụ:

    + Tập hợp các đồ vật (sách, bút) đặt trên bàn.

    + Tập hợp học sinh lớp 6A.

    + Tập hợp các số tự nhiên lớn hơn 7.

    + Tập hợp các chữ cái trong hệ thống chữ cái Việt Nam.

    2. Cách viết tập hợp

    + Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C,…

    + Để viết tập hợp thường có hai cách viết:

    * Liệt kê các phần tử của tập hợp

    Ví dụ: Gọi A là tập hợp các số tự nhiên nhỏ hơn 5

    A = {1; 2; 3; 4}

    * Theo tính chất đặc trưng cho các phần tử của tập hợp đó.

    N là tập hợp các số tự nhiên

    Các số 0; 1; 2; 3; 4 là các phần tử của tập hợp A

    + Kí hiệu:

    * 2 ∈ A đọc là 2 thuộc hoặc là 2 thuộc phần tử của A.

    * 6 ∉ A đọc là 6 không thuộc A hoặc là 6 không là phần tử của A.

    Chú ý:

    * Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số.

    * Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.

    * Ngoài ra ta còn minh họa tập hợp bằng một vòng tròn kín, mỗi phần tử của tập hợp được biểu diễn bằng 1 dấu chấm bên trong vòng tròn kín đó.

    Ví dụ: Tập hợp B trong hình vẽ là B = {0; 2; 4; 6; 8}

    B. Bài tập

    Câu 1: Cho tập hợp A là các chữ cái trong cụm từ: “Thành phố Hồ Chí Minh”.

    a) Hãy liệt kê các phần tử trong tập hợp A.

    b) Trong các kết luận sau, kết luận là đúng?

    + b thuộc tập hợp A

    + t thuộc tập hợp A

    + m thuộc tập hợp A.

    Hướng dẫn giải:

    a) Các phần tử trong tập hợp A là A = {t; h; a; n; p; o; c; i; m}

    b) Trong các kết luận, các kết luận đúng là

    + t thuộc tập hợp A

    + m thuộc tập hợp A.

    Câu 2: Cho tập hợp A = {1; 2; 3; 4; 5; 6} và B = {1; 3; 5; 7; 9}

    a) Viết tập hợp C gồm các phần tử thuộc A nhưng không thuộc B

    Hướng dẫn giải:

    a) Các phân tử thuộc A không thuộc B là 2; 4; 6

    Nên tập hợp C là C = {2; 4; 6}

    b) Các phần tử vừa thuộc A vừa thuộc B là 1; 3; 5

    Nên tập hợp D là D = {1; 3; 5}

    c) Các phần tử thuộc B nhưng không thuộc A là 7; 9

    Nên tập hợp E là E = {7; 9}

    tag: những phát triển về lũy thừa kì tìm sách đáp án so sánh tap nhanh chia hết bổ trợ chương co dap an violet ôn hè lên pdf

    --- Bài cũ hơn ---

  • Sáng Kiến Kinh Nghiệm Rèn Luyện Kỹ Năng Trình Bày Lời Giải Bài Toán Cho Học Sinh Lớp 6
  • Chọn Mua Sách Toán Lớp 1 Nâng Cao Có Lời Giải Cho Con
  • Bản Mềm: 29 Bài Toán Nâng Cao Lớp 1
  • 80 Bài Toán Ôn Luyện Học Sinh Giỏi Lớp 2
  • Toán Lớp 2 Nâng Cao Có Lời Giải
  • Chuyên Đề Toán Có Lời Văn

    --- Bài mới hơn ---

  • Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Giải Toán Có Lời Văn Lớp 3(Có Đáp Án)
  • Kinh Nghiệm Dạy Học Giải Toán Có Lời Văn Lớp 3
  • Tuần 2. Ai Có Lỗi?
  • Sáng Kiến Kinh Nghiệm Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Đề tài “Nâng cao chất lượng Giải toán có lời văn” – bậc tiểu học.

    Lời nói đầu

    Xuất phát từ thực tiễn triển khai thực hiện chương trình và các môn học khác theo chương trình Bộ trưởng Bộ GD & ĐT ban hành mà hiện nay đang được toàn xã hội quan tâm ở mức cao nhất về nội dung, chương trình, chất lượng dạy học.

    Chất lượng giáo dục ở trong các nhà trường đã được nâng cao song vẫn còn hạn chế: Còn không ít thầy cô chưa khuyến khích học sinh học tập một cách chủ động, sáng tạo. Đặc biệt là vận dụng kiến thức đã học vào đời sống. Học sinh chưa khai thác hết khả năng tiềm ẩn trong nội dung bài học để từ đó tìm ra chìa khoá giải quyết vấn đề.

    Mục tiêu của chuyên đề nhằm giúp cho giáo viên hiểu và thực hiện việc dạy học sinh giải toán có lời văn ở bậc Tiểu học nói chung có chất lượng. Mặt khác giúp cho công tác quản lý, công tác chỉ đạo hoạt động dạy- học. Tuy nhiên đè tài xây dựng không tránh khỏi thiếu sót, rất mong được sự góp ý kiến của BGH, của các đồng nghiệp để đề tài được hoàn thiện hơn.

    Cấu trúc đề tài

    Mở đầu

    I- Lý do chọn đề tài.

    II- Cơ sở lý luận.

    III- Cơ sở thực tiễn

    Nội dung đề tài

    I – ND chương trình, yêu cầu KT,KN giải toán có lời văn – bậc tiểu học.

    II- Quy trình dạy tiết toán bậc tiểu học.

    III- Các phương pháp dạy giải toán có lời văn bậc tiểu học.

    IV- Biện pháp dạy giải toán có lời văn bậc tiểu học.

    Kết luận

    I- Kết quả.

    II- Bài học kinh nghiệm.

    A- Phần mở đầu

    I- Lý do chọn đề tài:

    Trong môn học toán ở bậc Tiểu học, các bài toán đố có một vị trí quan trọng. Một phần lớn thời gian học sinh giành cho việc học giải các bài toán đố. Kết quả học toán của học sinh cũng được đánh giá trước hết qua khả năng giải toán, biết giải thành thạo các bài toán là tiêu chuẩn chủ yếu để đánh giá trình độ học toán của mỗi học sinh. Việc giải toán giúp học sinh củng cố, vận dụng và hiểu sâu sắc thêm tất cả các kiến thức về số học, về đo lường, về các yếu tố đại số, về các yếu tố hình học,… đã được học trong môn toán ở trường Tiểu học đều được học sinh tiếp thu qua con đường giải toán, chứ không phải qua con đường lý luận.

    Thông qua nội dung thực tế nhiều hình nhiều vẻ của các đề toán, học sinh sẽ tiếp nhận được những kiến thức phong phú về cuộc sống và có điều kiện để rèn luyện khả năng áp dụng các kiến thức toán học vào cuộc sống; làm tốt điều Bác Hồ căn dặn: “Học đi đôi với hành”.

    Mỗi đề toán là một bức tranh nhỏ của cuộc sống. Khi giải bài toán học sinh phải biết rút ra từ bức tranh ấy các bản chất toán học của nó, phải biết lựa chọn những phép tính thích hợp, biết làm đúng các phép tính đố, biết đặt lời giải chính xác… Vì thế quá

    --- Bài cũ hơn ---

  • Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Những Bài Giải Toán Lớp 5
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 4&5

    --- Bài mới hơn ---

  • Những Bài Giải Toán Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • ********** **********

    CHUYÊN ĐỀ

    MỘT SỐ BIỆN PHÁP GIẢI TOÁN CÓ LỜI VĂN Ở KHỐI 4&5

    Người thực hiện: Phạm Thanh Điền

    TRƯỜNG TIỂU HỌC MINH THUẬN 5

    A. Tầm quan trọng của việc giải toán có lời văn:

    Chương trình toán của tiểu học có vị trí và tầm quan trọng rất lớn. Toán học góp phần quan trọng trong việc đặt nền móng cho việc hình thành và phát triển nhân cách học sinh. Trên cơ sở cung cấp những tri thức khoa học ban đầu về số học, các số tự nhiên, các số thập phân, các đại lượng cơ bản, giải toán có lời văn ứng dụng thiết thực trong đời sống và một số yếu tố hình học đơn giản.

    Môn toán ở tiểu học bước đầu hình thành và phát triển năng lực trừu tượng hoá, khái quán hoá, kích thích trí tưởng tượng, gây hứng thú học tập toán, phát triển hợp lý khả năng suy luận và biết diễn đạt đúng bằng lời, bằng viết, các, suy luận đơn giản, góp phần rèn luyện phương pháp học tập và làm việc khoa học, linh hoạt sáng tạo.

    Mục tiêu nói trên được thông qua việc dạy học các môn học, đặc biệt là môn toán. Môn này có tầm quan trọng vì toán học với tư cách là một bộ phận khoa học nghiên cứu hệ thống kiến thức cơ bản và sự nhận thức cần thiết trong đời sống sinh hoạt và lao động của con người. Môn toán là “chìa khoá“ mở của cho tất cả các ngành khoa học khác, nó là công cụ cần thiết của người lao động trong thời đại mới.

    Trong dạy – học toán ở tiểu học, việc giải toán có lời văn chiếm một vị trí quan trọng. Có thể coi việc dạy – học và giải toán là “ hòn đá thử vàng“ của dạy – học toán. Trong giải toán, học sinh phải tư duy một cách tích cực và linh hoạt, huy động tích cực các kiến thức và khả năng đã có vào tình huống khác nhau, trong nhiều trường hợp phải biết phát hiện những dữ kiện hay điều kiện chưa được nêu ra một cách tường minh và trong chừng mực nào đó, phải biết suy nghĩ năng động, sáng tạo. Vì vậy có thể coi giải toán có lời văn là một trong những biểu hiện năng động nhất của hoạt động trí tuệ của học sinh.

    Dạy học giải toán có lời văn ở bậc tiểu học nhằm mục đích chủ yếu sau:

    -Giúp học sinh luyện tập, củng cố, vận dụng các kiến thức và thao tác thực hành đã học, rèn luyện kỹ năng tính toán bước luyện tập vận dụng kiến thức và rèn luyện kỹ năng thực hành vào thực tiễn.

    -Giúp học sinh từng bước phát triển năng lực tư duy, rèn luyện phương pháp và kỹ năng suy luận, tập dượt khả năng quan sát, phỏng đoán, tìm tòi, tuyệt đối không sỉ nhục học sinh trước lớp.

    -Để giúp học sinh có một số kiến thức về phương pháp giải toán có lời văn giáo viên cần hướng dẫn học sinh như sau: cần chủ động, sáng tạo, tránh sao chép. Điều cần thiết là phải có khả năng suy luận hợp lý,diễn đạt đúng, phát hiện và giải quyết vấn đề đơn giản,gần gũi với cuộc sống, chăm chú và hứng thú học toán. Từ đó chủ động, linh hoạt và sáng tạo hơn trong việc học toán.

    – Nội dung giải toán có lời văn là mảng kiến thức mang tính thực tiễn cao, áp dụng kiến thức đã học vào giải quyết những vấn đề thực tiễn. Vì thế nội dung dạng toán này đã có từ xưa. Nhưng trong quá trình dạy đối với mỗi người nó luôn mới mẻ và luôn thúc đẩy người giáo viên suy nghĩ tìm tòi để rút ra phương pháp dạy phù hợp hơn với từng đối tượng kiến thức, học sinh, phù hợp với sự phát triển đòi hỏi của xã hội hiện tại và tương lai. Vấn đề mang tính thực tiễn nên luôn mới mẻ, hấp dẫn đối với người giáo viên có tâm huyết.

    Việc giải toán góp phần quan trọng vào việc rèn luyện cho học sinh năng lực tư duy và những đức tính tốt của con người lao động mới. Khi giải một bài toán, tư duy của học sinh phải hoạt động một cách tích cực vì các em cần phân biệt cái gì đã cho và caí gì cần tìm, thiết lập các mối liên hệ giữa các dữ kiện giữa cái đã cho và cái phải tìm; Suy luận, nêu nên những phán đoán, rút ra những kết luận, thực hiện những phép tính cần thiết để giải quyết vấn đề đặt ra v.v… Hoạt động trí tuệ có trong việc giải toán góp phần giáo dục cho các em ý trí vượt khó khăn, đức tính cẩn thận, chu đáo làm việc có kế hoạch, thói quen xem xét có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm, óc độc lập suy nghĩ, óc sáng tạo v.v…

    a. Thuận lợi:

    – Đa số các em đều ngoan, có ý thức ham học.

    – Một số gia đình đã quan tâm đến đến việc học tập của con em mình.

    – Đồ dùng học tập, sách giáo khoa đầy đủ.

    b. Khó khăn:

    * Chủ quan : + Đối với học sinh

    – Nhận thức của HS chưa đồng đều.

    – Việc xác định đề toán của các em chưa thành thạo.

    – Một số em còn chủ quan , chưa đọc kĩ đề bài.

    + Đối với giáo viên :

    – Việc giảng dạy của GV đôi khi chưa phát huy hết được tính tích cực, chủ động sáng tạo của các em.

    – Trong quá trình tổ chức cho HS thực hành giải toán có những lúc chưa thật sự linh hoạt.

    – Thiếu trang thiết bị dạy học.

    * Khách quan :

    – Vốn Tiếng Việt của một số em dân tộc còn hạn chế nên nhiều khi việc hiểu nghĩa của từ trong toán học đối với các em là rất khó, dẫn đến học sinh trả lời không chính xác.

    – Một số phụ huynh không quan tâm đến việc học hành của con cái, phó thác cho giáo viên

    – Đó là những nguyên nhân ảnh hưởng trực tiếp đến chất lượng hướng dẫn HS giải các bài toán ở dạng có lời văn.:

    – Do quên kiến thức cơ bản, kĩ năng tính toán yếu.

    – Do thiếu điều kiện học tập hoặc do điều kiện khách quan tác động như: Gia đình xảy ra sự cố đột ngột, hoàn cảnh éo le…

    – Vốn kiến thức cơ bản ở các lớp dưới còn yếu hoặc thiếu. Dẫn tới tình trạng mà chúng ta quen gọi là bị hổng kiến thức hoặc mất căn bản.

    – Một phần do thói quen học vẹt, ghi nhớ máy móc không chủ định của học sinh, tiếp thu thụ động, chỉ tiếp nhận được cái đã có sẵn.

    – Khả năng kết hợp giữa tri thức đã học với kiến thức vốn có trong cuộc sống chưa cao.

    – Sự kết hợp các loại kiến thức của các môn học để vận dụng vào học toán chưa sâu.

    B. CÁC PHƯƠNG PHÁP DÙNG ĐỂ DẠY GIẢI BÀI TOÁN CÓ LỜI VĂN:

    1/ Phương pháp trực quan:

    Nhận thức của trẻ từ 6 đến 11 tuổi còn mang tính cụ thể, gắn với các hình ảnh và hiện tượng cụ thể, trong khi đó kiến thức của môn toán lại có tính trừu tượng và khái quát cao. Sử dụng phương pháp này giúp học sinh có chỗ dựa cho hoạt động tư duy, bổ xung vốn hiểu biết, phát triển tư duy trừu tượng và vốn hiểu biết. Ví dụ: khi dạy giải toán ở lớp Năm, giáo viên có thể cho học sinh quan sát mô hình hoặc hình vẽ, sau dó lập tóm tắt đề bài qua, rồi mới đến bước chọn phép tính.

    2/ Phương pháp thực hành luyện tập:

    Sử dụng phương pháp này để thực hành luyện tập kiến thức, kỹ năng giải toán từ đơn giản đến phức tạp ( Chủ yếu ở các tiết luyện tập ). Trong quá trình học sinh luyện tập, giáo viên có thể phối hợp các phương pháp như: gợi mở – vấn đáp và cả giảng giải – minh hoạ.

    3/ Phương pháp gợi mở – vấn đáp:

    Đây là phương pháp rất cần thiết và thích hợp với học sinh tiểu học, rèn cho học sinh cách suy nghĩ, cách diễn đạt bằng lời, tạo niềm tin và khả năng học tập của từng học sinh.

    4/ Phương pháp giảng giải – minh hoạ:

    Giáo viên hạn chế dùng phương pháp này. Khi cần giảng giải – minh hoạ thì giáo viên nói gọn, rõ và kết hợp với gợi mở – vấn đáp. Giáo viên nên phối hợp giảng giải với hoạt động thực hành của học sinh ( Ví dụ: Bằng hình vẽ, mô hình, vật thật…) để học sinh phối hợp nghe, nhìn và làm.

    5/ Phương pháp sơ đồ đoạn thẳng:

    Giáo viên sử dụng sơ đồ đoạn thẳng để biểu diễn các đại lượng đã cho ở trong bài và mối liên hệ phụ thuộc giữa các đại lượng đó. Giáo viên phải chọn độ dài các đoạn thẳng một cách thích hợp để học sinh dễ dàng thấy được mối liên hệ phụ thuộc giữa các đại lượng tạo ra hình ảnh cụ thể để giúp học sinh suy nghĩ tìm tòi giải toán.

    C. MỘT SỐ BIỆN PHÁP ĐỂ NÂNG CAO CHẤT LƯỢNG GIẢI CÁC BÀI TOÁN CÓ LỜI VĂN Ở LỚP 4&5:

    1. Về phía giáo viên:

    – Cần trau dồi thêm kiến thức. Dành nhiều thời gian cho việc nghiên cứu, tìm hiểu, học hỏi ở đồng nghiệp, ở tài liệu để nâng cao nghiệp vụ. Đặc biệt là nghiên cứu sâu việc giảng dạy theo phương pháp mới.

    Song song với nhiệm vụ vừa nêu thì giáo viên cũng cần thực hiện tốt như chương trình tăng cường tiếng Việt cho các em. Đồng thời giúp các em phát triển phong phú thên ngôn ngữ tiếng Việt đặc biệt là đối với đối tượng các em là người dân tộc thiểu số.

    Phân chia nhỏ từng đơn vị kiến thức để có những phương pháp, hình thức phù hợp.

    Chuẩn bị đồ dùng dạy học một cách chu đáo. Cố gắng tận dụng những trang thiết bị một cách tối đa vào việc dạy và học.

    Cùng với những tích luỹ về kiến thức nêu trên tôi đã thực hiện cụ thể những việc sau:

    Hướng dẫn học sinh nhận biết các yếu tố của bài toán.

    Học sinh nhận biết nguồn gốc thực tế của bài toán và tác dụng phục vụ thực tiễn cuộc sống của bài toán chẳng hạn: Cần tính năng suất lúa trên một diện tích đất trồng – tính bình quân thu nhập hàng tháng theo đầu người trong gia đình em…

    Cho học sinh nhận rõ mối quan hệ chặt chẽ giữa các đại lượng trong bài toán. Như khi giải bài toán chuyển động đều, học sinh dựa vào “cái đã cho “, “cái phải tìm ” mà xác định mối quan hệ giữa các đại lượng: Vân tốc – quãng đường – thời gian để tìm đại lượng chưa biết.

    “cái đã cho “, “cái phải tìm ” mà xác định mối quan hệ giữa các đại lượng: Vân tốc – quãng đường – thời gian để tìm đại lượng chưa biết.

    – Tập cho học sinh xem xét các đối tượng toán học dưới nhiều hình thức khác nhau thậm chí ngược nhau và tập diễn đạt các kết luận dưới nhiều hình thức khác nhau. Chẳng hạn: “Số bạn gái bằng 1/3 số bạn trai” cũng có nghĩa là “số bạn trai gấp 3 lần số bạn gái” hay “đáy nhỏ bằng 2/3 đáy lớn ” cũng có nghĩa là “đáy lớn gấp rưỡi đáy nhỏ” hay “đáy lớn gấp 1,5 lần đáy nhỏ”.

    – Ngoài ra hệ thống câu hỏi giáo viên đặt ra cho học sinh cũng cần hợp lý và logic. Bên cạnh đó có những câu hỏi gợi mở giúp học sinh xác định hướng giải quyết vấn đề.

    2. Phân loại bài toán có lời văn.

    Để giải được bài toán thì học sinh phải hiểu đề bài, hiểu các thành phần của nó. những cái đã cho và những cái cần tìm thường là những số đo đại lượng nào đấy được biểu thị bởi các phép tính và các quan hệ giữa các số đo. Dựa vào đó mà có thể phân loại các bài toán:

    3. Nâng cao chất lượng giờ dạy trên lớp:

    Đây là biện pháp trọng tâm, để HS nắm chắc cách giải toán có lời văn, người GV cần hướng dẫn HS nắm được các bước chung trước khi làm bài.

    + Đọc kĩ đề toán để xác định yêu cầu của đề ( những điều đã cho và những cái phải tìm)

    + Tóm tắt đề toán bằng sơ đồ, hình vẽ, ngôn ngữ, kí hiệu ngắn gọn.

    + Phân tích đề toán để tìm cách giải.

    + Giải bài toán và thử lại.

    4. Phân loại theo số các phép tính:

    Bài toán đơn: là bài toán mà khi giải chỉ cần 1 phép tính. Ở lớp 5 loại toán này thừơng được dùng để nêu ý nghĩa thực tế của phép tính, nó phù hợp với quá trình nhận thức: Thực tiễn – tư duy trừu tượng – thực tiễn.

    Ví dụ : Để dạy trừ số đo thời gian có bài toán “Một ô tô đi từ Huế lúc 13 giờ 10 phút và đến Đà Nẵng lúc 15 giờ 55 phút. Hỏi ô tô đó đi từ Huế đến Đà Nẵng hết bao nhiêu thời gian? ” (Ví dụ sách giáo khoa trang 132) . Từ bản chất của bài toán học sinh hình thành phép trừ.

    15 giờ 55 phút – 13 giờ 10 phút = 2 giờ 45 phút.

    Bài toán hợp: là bài toán mà khi giải cần ít nhất 2 phép tính. Loại bài toán này thường dùng để luyện tập, củng cố kiến thức đã học. Ở lớp 5, dạng toán này có mặt ở hầu hết các tiết học toán.

    5. Phân loại theo phương pháp giải:

    Trong thực tế, nhiều bài toán có nội dung khác khau nhưng có thể sử dụng cùng một phương pháp suy luận để giải.

    Từ những việc đã được phân tích rất cụ thể trên thì chúng ta cũng cần hình thành cho học sinh các bước chung khi giải toán.

    Bước 1: Phân tích ý nghĩa bài toán .

    Đây là bước đầu tiên trong các yêu cầu giải toán. Trước hết các em cần đọc đề bài nhiều lần, suy nghĩ về ý nghĩa của từng chữ, từng câu, từng số của bài toán và đăt biệt chú ý tới câu hỏi của bài toán hỏi gì? -Từ đó cần biết những gì bài toán đã cho biết? Trong bước này cần nhắc nhở học sinh chớ vội vàng tính toán khi chưa nghiên cứu kỹ đề bài.

    Bước 2: Tóm tắt đề bài toán

    Đây là bước thiết lập mối quan hệ giữa các yêu cầu đã chovà cho học sinh diễn đạt nội dung bài toán bằng ngôn ngữ, kí hiệu ngắn gọn, có thể tóm tắt đề toán bằng chữ hoặc minh họa bằng sơ đồ, doạn thẳng, hình vẽ.

    Bước 3: Suy nghĩ để thiết lập khi giải toán

    Bước này yêu cầu học sinh phải suy nghĩ, tư duy xem muốn trả lời câu hỏi của bài toán thì phải biết đề toán đã cho biết những gì? Làm tính gì? Và phép tính đó cần thiết cho việc trả lời câu hỏi của bài toán không? Từ đó học sinh suy nghĩ để có thể thiết lập trình tự giải bài toán.

    Bước 4: Thực hiện phép tính kèm lời văn:

    Đây là bước quan trọng mà học sinh phải thực hiện đầy đủ trong bài làm, các em phép tính nào cũng cần tự kiểm tra phép tính đúng hay nhầm lẫn và lời văn phải phù hợp với phép tính đó.

    Bước 5: Thử lại kết quả

    Đây là bước cuối cùng yêu cầu học sinh xem đáp số tìm được có trả lời đúng câu hỏi của bài toán, có phù hợp với nội dung bài toán không? Nếu có thể nên tìm cách nào ngắn gọn hơn

    Ví dụ 1 : Bài 1 ( Tr 151- Toán 4)

    Hiệu của 2 số là 85. Tỉ số của 2 số đó là 3/8. Tìm 2 số đó?

    Với bài toán trên tôi hướng dẫn HS giải theo các bước sau:

    + Bước 1: Yêu cầu HS đọc kĩ đề bài, xác định được tổng và tỉ số của 2 số. Tự dự kiến cách tóm tắt bài toán theo dữ liệu của đề bài.

    + Bước 2: HS trao đổi theo nhóm đôi để tự tóm tắt bài toán bằng sơ đồ đoan thẳng như sau:

    Số lớn:

    ?

    85

    ?

    + Bước 3: Dựa vào sơ đồ để phân tích bài toán, tìm phương án giải.

    GV hướng dẫn HS phân tích bài toán theo các câu hỏi sau:

    – Nhìn vào sơ đồ em thấy : Giá trị của số bé gồm mấy phần? Giá trị của số lớn gồm mấy phần như thế?

    – Hiệu của 2 số là bao nhiêu?

    – Muốn tìm giá trị một phần em làm thế nào?

    – Khi tìm được giá trị 1 phần, ta cần đi tìm những gì tiếp theo?

    + Bước 4: Giải bài toán

    Bài giải

    Hiệu số phần bằng nhau là: 8 – 3 = 5 ( Phần )

    Giá trị một phần là: 85 : 5 = 17

    Số bé là: 17 X 3 = 51

    Số lớn là: 51 + 85 = 136

    Đáp số: Số bé: 51

    Số lớn: 136

    + Bước 5: Thử lại tính hiệu của 2 số: 136 – 51 = 85 ( Đúng theo dữ liệu đầu bài )

    Ví dụ 2 :Cho hình thang vuông ABCD có D 30 em A

    kích thước như hình vẽ. Tính :

    a, Tính diện tíc hình thang ABCD

    b, Tính diện tích tam giác ABC. 25 em

    C B

    50 em

    + Bước 3: Giải bài toán.

    Bài giải :

    a, Diện tích hình thang ABCD là :

    ( 50 + 30 ) x 25 : 2 = 1000 ( cm2 )

    b, Diện tích hình tam giác ADC là :

    25 x 50 : 2 = 625 ( cm2 )

    Diện tích hình tam giác ABC là :

    1000 – 625 = 375 ( cm2 )

    Đáp số : a, 1000 cm2

    b, 375 cm2

    + Bước 4 : Thử lại:

    Lấy diện tích tam giac ABC + diện tích tam giác ADC = diện tích hình thang ABCD là đúng với dữ kiện đầu bài.

    5. Tăng cường công tác kiểm tra, đánh giá kết quả học tập của HS:

    – GV làm tốt công tác kiểm tra đánh giá thường xuyên và định kỳ về kết quả học tập của HS để nắm bắt kịp thời việc vận dụng,

    rèn kỹ năng giải toán có lời văn của HS cả lớp, từ đó phân loại HS theo các trình độ để tự điều chỉnh về mục tiêu đối với từng bài dạy cụ thể cho phù hợp với các nhóm đối tượng HS lớp phụ trách. Bên cạnh, công tác kiểm tra, đánh giá HS còn giúp cho GV tự điều chỉnh về hình thức tổ chức dạy học, điều chỉnh về phương pháp dạy học sao cho kết quả các tiết dạy đạt được mục tiêu đã đề ra. GV luôn quan tâm, giúp đỡ những em HS có kết quả học tập môn toán nói chung và giải toán có lời văn đạt kết quả chưa cao để các em có hướng vươn lên

    6. Tự tin và quyết tâm thực hiện việc đổi mới phương pháp dạy học:

    Để phát huy tính tích cực, chủ động, say mê học tập môn Toán nói chung và giải bài toán có lời văn nói riêng cho các em học sinh, giáo viên phải tự tin và quyết tâm trong việc thực hiện đổi mới phương pháp dạy học. Phải kết hợp nhuần nhuyễn và linh hoạt các phương pháp dạy học truyền thống và hiện đại như: Phương pháp thuyết trình, giảng giải và minh họa, gợi mở vấn đáp, trực quan, thực hành luyện tập. Tăng cường tổ chức các hoạt động học tập cá thể phối hợp với học tập hợp tác

    7. Tổ chức các trò chơi toán học:

    Tổ chức cho HS tham gia các trò chơi học tập kết hợp trong các tiết dạy. GV phải xác định rõ kiến thức và kỹ năng của trò chơi. Chuẩn bị chu đáo, hướng dẫn rõ ràng cách chơi, luật chơi, thực hiện đúng lúc với các trò chơi hợp lý, cân đối với các hoạt động của tiết dạy. Tổ chức các trò chơi trong toán học như: Tiếp sức, ai đúng ai nhanh, …..

    Thông qua việc tổ chức thành công các trò chơi, GV đã tạo không khí thoải mái, nhẹ nhàng, kích thích các hoạt động học tập của HS. Củng cố chắc chắn các kiến thức, kỹ năng cần đạt trong tiết dạy cho HS.

    * Tóm lại: Việc dạy giải toán có lời văn là một bộ phận quan trọng trong chương trình toán tiểu học, là một công việc hàng ngày của GV và HS. Những bài toán được giải theo những yêu cầu riêng của đề bài, tạo điều kiện cho HS suy nghĩ để giải đúng. Thông qua việc dạy giải toán có lời văn sẽ giúp các em phát triển trí thông minh, óc sáng tạo và làm việc một cách khoa học. Bởi vì khi giải toán HS phải biết tập trung chú ý vào bản chất của đề toán, phải biết gạn bỏ những cái thứ

    yếu, biết phân biệt cái đã cho và cái phải tìm, phải biết phân tích để tìm ra những đường dây liên hệ giữa các số liệu…. Nhờ đó mà đầu óc các em sáng suốt hơn, tinh tế hơn, tư duy của các em sẽ linh hoạt hơn, chính xác hơn. Cách suy nghĩ và làm việc của các em sẽ khoa học hơn. Việc giải toán còn đòi hỏi HS phải tự mình xem xét vấn đề, tự mình tìm tòi cách giải quyết vấn đề, tự mình thực hiện các phép tính và kiểm tra lại kết quả. Do đó giải các bài toán có lời văn là cách tốt nhất để rèn luyện đức tính kiên trì, tự lực vượt khó, cẩn thận chu đáo, tính chính xác cho HS.

    Vì những tác dụng to lớn nói trên mà mỗi HS đều phải ra sức rèn luyện để giải toán cho giỏi. Điều đó không những giúp các em học giỏi toán mà nó còn giúp các em học giỏi tất cả các môn học khác.

    Bản thân luôn áp dụng đổi mơi phương pháp giảng dạy, chọn phương pháp tối ưu nhất giúp học sinh học tốt ở trường cũng như ở nhà. Vì thế khi gặp bất kỳ bài toán nào các em cũng mạnh dạn và tự tin để làm toán. Các em sẽ phấn khởi học tập, tiếp thu sẽ tốt hơn, thích thú học toán hơn và có khả năng học tốt môn toán. Giáo viên thấy được hiệu quả của mình trong giảng dạy, càng thêm yêu trường, yêu lớp.

    CÁN BỘ GIÁO VIÊN TRƯỜNG TIỂU HỌC MINH THUẬN 5

    QUYẾT TÂM THỰC HIỆN NGHỊ QUYẾT

    NĂM HỌC 2011- 2012 TRỞ THÀNH HIỆN THỰC VÀ GÓP

    PHẦN NÂNG CAO CHẤT LƯỢNG GIÁO DỤC

    Kính chào quý thầy cô

    dồi dào sức khỏe, hạnh phúc, thành đạt

    và hoàn thành xuất sắc

    nhiệm vụ được giao

    --- Bài cũ hơn ---

  • Chuyên Đề Giải Toán Có Lời Văn Lớp 3
  • Đề Tài Một Số Biện Pháp Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • “nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5”
  • Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 5 Thhoasonahoabinh2Edu Doc
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100