Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên

--- Bài mới hơn ---

  • Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Hệ Phương Trình Bậc Nhất Hai Ẩn (Nâng Cao)
  • Giải Phương Trình Bậc 2 Số Phức
  • Nâng Cao Toán Lớp 8
  • Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • A. Những vấn đề chung

    I/ Lý do chọn đề tài:

    Các bài toán về phương trình nghiệm nguyên là những bài toán khó. Đường lối chung để giải phương trình này là dựa vào đặc điểm của phương trình để thu hẹp miền chứa nghiệm.

    Để phát huy tính tích cực, tự giác, chủ động trong học tập của mỗi học sinh, đối với mỗi dạng toán này cũng như việc tạo ra sự hứng thú say mê học tập của các em là việc rất cần thiết của các thầy cô giáo dạy toán. Do vậy tôi muốn trao đổi kinh nghiệm về một số phương pháp thường dùng để giải phương trình nghiệm nguyên hay gặp trong chương trình toán cấp 2 mà tôi đã làm.

    II/ Mục đích:

    Giúp học sinh nắm được một số phương pháp cơ bản để giải phương trình nghiệm nguyên.

    III/ Nhiệm vụ:

    – Đưa ra các phương pháp và ví dụ minh hoạ

    – Rút kinh nghiệm

    IV/ Đối tượng và phạm vi nghiên cứu:

    – Đối tượng: các tài liệu về phương trình nghiệm nguyên

    – Phạm vi nghiên cứu: các bài toán về phương trình nghiệm nguyên trong chương trình toán cấp 2.

    V/ Phương pháp nghiên cứu:

    – Nghiên cứu tài liệu

    – Trao đổi kinh nghiệm

    – Tổng kết rút kinh nghiệm

    Thử lại:

    x= k.(k+1); y = 3k+1 thoả mãn phương trình đã cho.

    Vậy phương trình (1) có nghiệm tổng quát:

    III/ Phương pháp dùng bất đẳng thức:

    1. Phương pháp sắp thứ tự các ẩn:

    Ví dụ 6: Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng

    Giải:

    Gọi các số nguyên dương phải tìm là x, y, z. Ta có: x + y + z = x.y.z (1)

    Do x, y, z có vai trò như nhau ở trong phương trình (1) nên có thể sắp thứ tự các ẩn như sau:

    Giải:

    Do vai trò bình đẳng của x và y. Giả sử , dùng bất đẳng thức để giới hạn khoảng giá trị của số nhỏ y

    Ta có:

    (1)

    Mặt khác do

    Do đó

    nên (2)

    Từ (1) và (2) ta có : . Do y

    +Với y =4 ta được:

    + Với y = 5 ta được: loại vì x không là số nguyên

    + Với y = 6 ta được:

    Vậy các nghiệm nguyên dương của phương trình là: (4; 12), (12; 4) , (6; 6)

    3/ Phương pháp chỉ ra nghiệm nguyên:

    Ví dụ 8: Tìm số tự nhiên x sao cho 2x+3x=5x

    Giải:

    Chia hai vế cho 5x, ta được:

    (1)

    +Với x=0 vế trái của phương trình (1) bằng 2 (loại)

    + Với x = 1 thì vế trái của phương trình bằng 1 ( đúng)

    + Với x thì:

    Nên: ( loại)

    Vậy nghiệm duy nhất của phương trình là x = 1

    4/ Sử dụng điều kiện của phương trình bậc hai có nghiệm

    Ta viết phương trình f(x; y) = 0 dưới dạng phương trình bậc hai đối với một ẩn đã chọn. Chẳng hạn chọn ẩn x, khi đó y là tham số, điều kiện cần để phương trình có nghiệm là , để có nghiệm nguyên còn cần phải là số chính phương.

    Ví dụ 9:

    Tìm các nghiệm nguyên của phương trình :

    x+y+xy = x2+y2 (1)

    Giải:

    Phương trình (1) tương đương với: x2-(y+1)x+(y2-y) = 0 (2)

    Điều kiện để (2) có nghiệm là

    --- Bài cũ hơn ---

  • 9 Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Giải 9 Bài Pt Mũ & Log Bằng Ẩn Số Phụ
  • Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai
  • Dạng Bài Tập Về Áp Dụng Công Thức Giải Bất Phương Trình Lớp 10 Phải Biết
  • Đạo Hàm Và Bài Toán Giải Phương Trình, Bất Phương Trình Lượng Giác
  • Pp Giải Pt&bpt Vô Tỷ

    --- Bài mới hơn ---

  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Một số phương pháp giải phương trình và bất phương trình vô tỷ.

    Trong chương trình Toán ở phổ thông cơ sở (PTCS), phổ thông trung học (PTTH) và nhất là ở trong các đề thi tuyển sinh vào các trường đại học và cao đẳng thường gặp nhiều bài toán về giải phương trình hoặc bất phương trình vô tỷ. Ngay cả ở chương trình Đại học sư phạm hoặc Cao đẳng sư phạm cũng yêu cầu sinh viên phải học và nắm vững các kỹ năng này (ở các môn đại số sơ cấp, thực hành giải toan, phương pháp dạy học toán,…). Tuy nhiên khi gặp loại toán này, đa số học sinh-sinh viên còn gặp nhiều khó khăn, lời giải thường thiếu chặt chẽ, do đó không đạt điểm tố đa.

    Một số định lý về phương trình và bất phương trình vô tỷ:

    Định lý 1:

    Phương trình tương đương với hệ: .

    Định lý 2:

    Bất phương trình tương đương với hệ: .

    Định lý 3:

    Bất phương trình tương đương với hệ: .

    Định lý 4:

    Bất phương trình tương đương với hệ:

    Một số phương pháp giải phương trình và bất phương trình vô tỷ:

    Phương pháp 1: Nâng lên luỹ thừa để phá dấu căn.

    Một trong các nguyên tắc để giải phương trình và bất phương trình chứa căn thức là chúng ta phải làm mất dấu căn. Thông thường chúng ta sử dụng một trong các định lý trên để bổ dấu căn của phương trình hoặc bất phương trình. Thường chỉ nên áp dụng một hoặc hai lần và khi đó sẽ đưa phương trình và bất phương trình vô tỷ về dạng mà ta có thể giải dễ dạng hơn.

    Ví dụ 1: Giải bất phương trình: (1).

    Giải: Điều kiện để phương trình có nghĩa là

    Ta xét các khả năng có thể xảy ra sau đây:

    1. Nếu : Khi đó (1)( (2)

    Do nên hai vế của (2) không âm, ta có thể bình phương hai vế, khi đó ta được:

    Bất phương trình cuối cùng đúng với mọi x thoả mãn , vậy là nghiệm của bất phương trình đã cho.

    2. Nếu : Khi đó 1+x(1-x . Khi đó ta có

    (1)(

    Nghiệm nà bị loại.

    Vậy nghiệm của bất phương trình là .

    Xét dấu của vế trái của 2 ta có:

    Vậy nghiệm của bất phương trình là: x(-13/6 và x(3.

    Ví dụ 3: Giải bất phương trình: (1).

    Giải: Điều kiện để bất phương trình có nghĩa là 10-x2(0(10 (x2 (

    . Với điều kiện đó ta có: (1) (2)

    Xét phương trình :

    Xét dấu vế trái của (2) ta có:

    Vậy nghiệm của bất phương trình là: .

    Phương pháp 3: Phương pháp đặt ẩn phụ.

    Một số bài toán về giải phương trình và bất phương trình có chứa căn thức có thể giải được nhờ việc đưa thêm vào các ẩn phụ để phá căn thức hoặc có thể đưa về các phương trình hoặc bất phương trình đại số. Thông thường có thể đặt ẩn mới bằng một căn thức (hoặc tổng hay hiệu hai căn thức) nào đó. Thường gặp 3 dạng ẩn phụ sau:

    Dạng 1: Đặt ẩn phụ để đưa về một phương trình hay bất phương trình với một ẩn mới.

    Dạng 2: Đặt ẩn phụ để đưa về một hệ hai phương trình hai ẩn.

    Dạng 3: Đặt ẩn phụ để đưa về một phương trình với hai ẩn (phương pháp sử dụng phương trình bậc hai).

    Ví dụ 4: Giải bất phương trình: (1).

    Giải: Điều kiện để bất phương trình có nghĩa là. Đặt t=, do (1 nên t(1. Khi đó ta có . Phương trình (1) trở thành: t=1,t=-3 (loại). Vậy ta có t=1

    . Vậy ta có x=1.

    Ví dụ 5: Giải

    --- Bài cũ hơn ---

  • 4 Cách Giải Phương Trình Vô Tỉ Cực Hay
  • Hướng Dẫn Học Sinh Lớp 9 Một Số Phương Pháp Giải Phương Trình Vô Tỉ
  • Cách Giải Bất Phương Trình Vô Tỷ Chứa Căn
  • Cđ Một Số Dạng Pt Vô Tỷ Và Cách Giải
  • Phương Trình Vi Phân Tuyến Tính Cấp 1, Bernoulli, Ricatti
  • Pt Mũ Có Lời Giải Chi Tiết

    --- Bài mới hơn ---

  • Giải Hệ Phương Trình Trong Excel Bằng Solver
  • Cách Giải Phương Trình Bậc Cao Bằng Excel
  • Giải Hệ Phương Trình Trong Excel
  • Cách Giải Hệ Phương Trình Bậc Nhất 2 Ẩn Với Phương Pháp Thế Và Phương Pháp Cộng Đại Số
  • Hệ Phương Trình Bậc Nhất Hai Ẩn
  • Published on

    1. 1. PHƢƠNG TRÌNH MŨ.Phƣơng pháp 1: Đưa về cùng cơ số:Giải phương trình 2x 1 x 1 21): 4.9 3.2 3 3Hdẫn: (1) ( )2 x 3 1 x . 2 2 x 1 x 22) 7.3 5 3x 4 5x 3 3Hdẫn: (2) 3x 1 5x 1 ( )x 1 1 x 1 5 x 1 x3) 5 .8 x 500Hdẫn: 3( x 1) 3 x 1 x x 3 2 x 3 x x 3 x x 3(3) 5 .2 5 .2 5 2 5 (2 ) 1 x 3 0 x 3 x 3 1 x 3 x x 3 5 ( 1 ) (5.2 ) 1 1 5.2 x 1 x log 5 2 2x x x x x4) [ 5 27 4 3 ] 4 3 4 37 . ĐS: x=10.Phƣong pháp 2: Đặt ẩn phụ: x2 x 21) 2 22 x x 3. x2 xHdẫn: Đặt 2 t (t 0) . Phương trình trở thành: 4 t 4 x 1t 3 t t 1(l ) x 2 2x 52) 3 36.3x 1 9 0 . ĐS: x=-1; x=-2. 2 x2 2x 1 23) 3 28.3x x 9 0 . ĐS: x=-2; x=1. x4) 9 6 x 2.4 x 3 2x 3Hdẫn: Chia cả 2 vế cho 4x ta được phương trình ( ) ( )x 2 0 . ĐS: x=0 2 2 x x2 5 x2 55) 4 12.2x 1 8 0. x 3 x x2 5 t 2 x x2 5 1Hdẫn: Đặt 2 t (t 0) 9 t 4 x x2 5 2 x 4 2 2 2 x 3x 26) 4 4x 6x 5 42 x 3x 7 1 HVQHQT – D – 99 sin x sin x7) 7 4 3 7 4 3 4 ĐHL – 98 3x x 1 128) 2 6.2 1 ĐHY HN – 2000 3 x 1 x 2 2 2x 7 x9) x 6. 0,7 7 ĐHAN – D – 2000 100
    2. 6. +a=16 hoặc a≤0 : pt có nghiệm duy nhất+0<a<16 : pt có 2 nghiệm phân biệt sin 2 x 2Bài 5: Tìm m để phương trình sau có nghiệm 81 81cos x mHdẫn: 2 81Đặt t 81sin x t 1;81 . Phương trình trở thành: t m tKhảo sát hàm số ta được kết quả 18≤m≤82 4 2 x2 2 x2Bài 6: Cho phương trình 3 2.3 2m 3 0 a) Giải phương trình khi m=0 b) Xác định m để phương trình có nghiệm. 2 x2Giải: Đặt 3 t t 0;9 a) x=±1 3 t2 b) Khảo sát hàm số f (t ) ;t t 0;9 được -30≤m≤2 2 2 1 1 t2 1 t2Bài 7: Tìm a để phương trình sau có nghiệm 9 (a 2).31 2a 1 0 1 1 t2 64Hdẫn: Đặt t= 3 t 3;9 . Khảo sát hs được 4 a 7 x2 x2 1Bài 8: Cho phương trình 2 1 2 1 m 0 . Tìm m để phương trình có nghiệm x2 2 1Hdẫn: Đặt 2 1 t t 1; . Phương trình trở thành: m t t 2 1Khảo sát hàm số f (t ) ; t 1; t được m 2 2 1 m 2 2 1 t x2 2 mx 2 2Bài 9: Cho phương trình 5 52 x 4mx 2 m x2 2mx m . Tìm m để phương trình có đúng 2nghiệm thuộc (0;2).Hdẫn: u x2 2mx 2Đặt 2 v u x2 2mx m v 2x 4mx 2 m uPhương trình trở thành 5 5u u 5v v 5v f (u) f (v) với f(t)=5t+t v uTa có f(t) là HSĐB trên R nên pt tương đương u=v g ( x) x2 2mx m 0 (*)Pt đã cho có đúng 2 nghiệm thuộc (0 ;2) khi và chỉ khi pt (*) có đúng 2 nghiệm thuộc (0 ;2). Khảo sát hàm sốta được kết quả không tồn tại m thoả mãn.Bài 10 :
    3. 7. Bµi tËp tæng hîp vÒ ph-¬ng tr×nh mòBµi 1: Gi¶i c¸c ph-¬ng tr×nh: 8 2x x3 4 a) 2 8 3 b) 5 x 5x 1 5x 2 3x 3x 1 3x 2 x 1 9 x2 cos x cos x c) x2 2x 2 3 x2 2x 2 d) 2 x2 x 2 x2 e) 2 x 4.3 x 2 2 2 x 1.33 x 2Bµi 2: Gi¶i c¸c ph-ong tr×nh: x x a) 3 5 3 5 7.2 x 0 b) 8 x 18 x 2.27 x 2 3x 3 1 12 c) 8 x 2 x 20 0 d) 2 3 x 6.2 x 3.( x 1) 1 2 2x e) 53 x 9.5 x 27 .(125 x 5 x ) 64Bµi 3: Gi¶i c¸c ph-¬ng tr×nh: a) 4.33x 3x 1 1 9x b) 5.32 x 1 7.3x 1 1 6.3x 9x 1 0 d) 5lg x 50 x lg 5 f) 4.2 3 x 3.2 x 1 22x 2 24x 2Bµi 4: Gi¶i c¸c ph-¬ng tr×nh: x log 2 log 2 2 x 1 2. log 2 x a) 2 x 48 b) 2.9 2 x log 2 6 x2 x d) 4.3 x 9.2 x 5.6 2 e) x 1 2 x 2 2x 1 42 3 2 3 2 3Bµi 5: Gi¶i c¸c ph-¬ng tr×nh: a) 3 2 x 2 x 9 .3 x 9.2 x 0 b) x 2 3 2 x .x 2. 1 2 x 0 c) 9 x 2. x 2 .3 x 2 x 5 0 d) 3.25 x 2 3x 10 .5 x 2 3 x 0Bµi 6: Gi¶i c¸c ph-¬ng tr×nh: 2 2 2 2 2 2 a) 4 x 3 x 2 4 x 6 x 5 4 2. x 3 x 7 1 b) 4 x x 21 x 2×1 1 c) 8.3 x 3.2 x 24 6 x d) 12.3 x 3.15 x 5 x 1 20 e) 2 x 3 x 1 6 xBµi 7: Gi¶i c¸c ph-¬ng tr×nh: x a) x x log 2 3 x log 2 7 2 b) 2 x 1 32 x x c) 3 2 2 2 2 x 3 x 1 2 x 1 x 1 d) x x log 2 3 x log 2 5Bµi 8: Gi¶i c¸c ph-¬ng tr×nh: 2 2 a) 3 x cos 2 x b) 4 x 2.x 2 x 1 .2 x x x x 2 1 x c) 7 5 3 2 2. 5 d) 2 cos x 2 x2 6 x e) 9.7 1 2 xBµi 9: Gi¶i c¸c ph-¬ng tr×nh: 1 x2 1 2x x 1 x2 1 2 x2 x2 1 1 a) 4 2 x 1 b) 2 2 2 x 2 2 4. cos3 x x 1 x c) 2 x 3. cos x 2x 7. cos 3x d) 2 3 7 4 3 x 1

    Recommended

    --- Bài cũ hơn ---

  • Pp Giải Phương Trình Mũ, Logarit
  • Giải Toán Lớp 8 Bài 3: Phương Trình Đưa Được Về Dạng Ax + B = 0
  • Chương Iii. §3. Phương Trình Đưa Được Về Dạng Ax + B = 0
  • Tổng Hợp Lý Thuyết Về Phương Trình Đưa Được Về Dạng Ax + B = 0
  • Ptlg Bậc I Dạng Asin X + Bcosx = C Phuong Trinh Asinx Bcosx C Tg Tiet 4 Ppt
  • Giải Hệ Pt Bằng Phương Pháp Thế

    --- Bài mới hơn ---

  • Chủ Đề 11: Các Dạng Hệ Phương Trình Đặc Biệt
  • Phương Pháp Giải Một Số Dạng Phương Trình Môn Toán Ở Cấp Thcs
  • Giáo Án Đại Số Lớp 8 Tiết 42 Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Cách Giải Phương Trình Bậc Bốn
  • Bảng Công Thức Lượng Giác Đầy Đủ,chi Tiết,dễ Hiểu
  • Ngày 15 / 12/ 2009

    Tiết 33: §3.GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP

    A . Mục tiêu:

    – Giúp HS hiểu cách biến đổi hệ phương trình bằng qui tắc thế.

    – HS nắm vững cách giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế

    – HS không bị túng khi gặp các trường hợp đặc biệt ( hệ vô nghiệm hoặc hệ vô số nghiệm)

    b. Chuẩn bị:

    -GV: Bảng phụ có ghi sẵn qui tắc thế, chú ý và cách giải mẫu một số hệ phương trình.

    -HS: -Bảng phụ nhóm,bút dạ , giấy kẻ ô vuông.

    C. tiến trình dạy học:

    Hoạt động 1: tra bài cũ:

    HS 1: Làm BT 8a(SGK)

    HS 2: Làm BT 9b(SGK)

    Hoạt động 2:

    1. Quy tắc thế:

    – Xét hệ phương trình sau:

    – Từ pt (1) , hãy biểu diễn x theo y ?

    – Lấy kết quả trên thế vào chỗ của x trong pt (2) thì ta sẽ được pt nào ?

    – Có nhận xét gì về pt vừa tìm được ?

    – Dùng pt (1′) cho pt (1), pt (2′) cho pt (2)ta được hệ pt nào?

    – Hệ này như thế nào với hệ (I) ?

    – Giải hệ pt mới và kết luận nghiệm của hệ đã cho?

    – Qua ví dụ trên , hãy nêu quy tắc thế?

    – ở bước 1 ta có thể biểu diễn y theo x được không ? Ta được biểu thức nào ?

    Ví dụ1:Xét hệ phương trình:

    (I) x – 3y = 2 (1)

    -2x + 5y = 1 (2)

    B: Từ (1) ta có : x = 3y + 2 (1′)

    vào (2) ta được: -2(3y +2) + 5y = 1 (2′)

    B: (I) x = 3y + 2 (1′)

    -2(3y + 2) + 5y = 1 (2′)

    Vậy hệ có nghiệm duy nhất là (-13 ; -5)

    Quy tắc thế : (SGK)

    Hoạt động 3:

    2. áp dụng:

    – áp dụng quy tắc thế để giải hệ phương trình sau.

    – HS đứng tại chỗ trình bày bài dưới sự hướng dẫn của GV.

    – GV cho HS quan sát minh hoạ bằng đồ thị của hệ pt này và kết luận.

    – HS thực hiện ?1(theo nhóm)

    – Sau đó GV thu bảng nhóm treo lên, HS lớp quan sát ,nhận xét.

    – Khi giải hệ pt bằng phương pháp đồ thị thì hệ vô nghiệm , vô số nghiệm có đặc điểm gì?

    – Khi giải hệ pt bằng phương pháp thế thì hệ vô số nghiệm hoặc vô nghiệm có đặc điểm gì?

    – Đọc chú ý (SGK)

    – HS đọc VD3 (SGK)

    – HS làm ?2 và ?3 SGK

    Ví dụ2: Giải hệ phương trình bằng phương pháp thế

    (I) 2x – y = 3 (1)

    x + 2y = 4 (2)

    Giải :

    Ta có :

    (I)

    Vậy hệ có một nghiệm duy nhất (2; 1)

    ?1. Giải hệ pt sau

    Nêu các bước giải hệ phương trình bằng phương pháp thế?

    Làm BT 12a; 13a; 14a(SGK)

    Hoạt động 5:

    Hướng dẫn về nhà:

    Nắm vững hai bước giải hệ pt bằng phương pháp thế.

    Làm BT 13b;14b;15;16(SGK)

    Đọc trước §4.Giải hệ pt bằng phương pháp cộng đại số.

    --- Bài cũ hơn ---

  • Kĩ Thuật Giải Hệ Phương Trình
  • Cđ Giải Hpt Không Mẫu Mực
  • Một Số Lưu Ý Khi Giải Phương Trình Lượng Giác
  • Chuyên Đề Phương Trình Nghiệm Nguyên
  • Sách Giải Bài Tập Toán Lớp 8 Bài 4: Bất Phương Trình Bậc Nhất Một Ẩn
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp

    --- Bài mới hơn ---

  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác
  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải phương trình vô tỉ bằng phương pháp lượng liên hợp

    Có rất nhiều phương cách giải PT Vô tỉ nhưng bản thân tôi thích nhất là PP lượng liên hợp vì tính tự nhiên của nó. Trong bài viết này tôi giới thiệu với các bạn một số suy nghĩ về phương pháp này.

    Cho hàm số , xác định trên .

    Ta biết là nghiệm phương trình .

    Mà theo định lí Bơzu nếu là nghiệm của đa thức thì

    . Từ đây ta có nhận xét:

    Nếu là một nghiệm của phương trình thì ta có thể đưa phương trình về dạng và khi đó việc giải phương trình quy về giải phương trình . Ta xét ví dụ sau:

    Ví dụ 1: Giải phương trình: (HVKTQS 2000).

    Giải: Điều kiện : .

    Ta thấy là một nghiệm của phương trình ( ta nghĩ đến vì khi đó và là những số chính phương) do đó ta có thể đưa phương trình về dạng: nên ta biến đổi phương trình như sau: , vấn đề còn lại của chúng ta là phải phân tích ra thừa số (Chú ý khi thì ), vì định lí Bơzu chỉ áp dụng cho đa thức nên ta phải biến đổi biểu thức này về dạng có mặt đa thức, tức là ta đưa về dạng

    điều này giúp ta liên tưởng đến đẳng thức : nên ta biến đổi :

    .

    Suy ra phương trình đến đây ta chỉ cần giải phương trình:

    .

    Vậy phương trình đã cho có hai nghiệm và .

    Nhận xét: 1) Qua ví dụ trên ta thấy để bỏ căn thức ta sử dụng hằng đẳng thức:

    hai biểu thức và ta gọi là hai biểu thức liên hợp của nhau. Nên phương pháp trên ta gọi là phương pháp nhân lượng liên hợp.

    2) Với phương pháp này điều quan trọng là ta phải biết được một nghiệm của phương trình, từ đó ta mới định hướng được cách biến đổi để là xuất hiện nhân tử chung. Để nhẩm nghiệm ta có thể sử dụng máy tính bỏ túi 570MS hoặc 570ES .

    Ví dụ 2: Giải phương trình : (THTT).

    Giải: Điều kiện : .

    Nhận thấy phương trình trên vẫn có nghiệm nên ta nghĩ đến cách giải phương trình trên bằng phương pháp nhân lượng liên hợp.

    Ta có:

    .

    Mặt khác vô nghiệm.

    Vậy phương trình đã cho có nghiệm duy nhất: .

    * Ta có dạng tổng quát của phương trình trên là:

    (Điều kiện : ).

    * Bằng máy tính ta có thể thấy được phương trình (*) vô nghiệm do đó ta nghĩ đến chứng minh phương trình (*) vô nghiệm. Thay vào phương trình (*) thì do đó ta tìm cách chứng minh VT(*) < VP(*).

    Ví dụ 3: Giải phương trình : (THTT).

    Giải: Điều kiện: .

    Ta thấy phương trình có một nghiệm nên ta phân tích ra thừa số .

    Ta có:

    Vậy phương trình có nghiệm duy nhất .

    Ví dụ 4: Giải phương trình: .

    Giải: Điều kiện: .

    Nhận thấy phương trình có một nghiệm .

    Phương trình

    Kết hợp với phương trình ban đầu ta có :

    (*) thử lại ta thấy hai nghiệm này đều thỏa mãn phương trình.

    Vậy phương trình đã cho có ba nghiệm: .

    Nhận xét: Để giải phương trình (*) ta phải kết hợp với phương trình ban đầu. Ta chú ý rằng phép biến đổi này là phép biến đổi hệ quả do đó sau khi giải xong ta phải thử lại các nghiệm để loại đi những nghiệm ngoại lai.

    Trong các ví dụ trên ta thấy mỗi phương trình đều có nghiệm hữu tỉ do đo việc dự đoán nghiệm tương đối dễ. Tuy nhiên trong nhiều trường hợp việc đoán nghiệm không được dễ dàng, đặc biệt là khi tất cả các nghiệm của phương trình đều là nghiệm vô tỉ! Trong trường hợp này chúng ta phải xử lí thế nào? Ta xét các ví dụ sau:

    Ví dụ 5: Giải phương trình :

    .

    Giải: Do nên .

    Bằng máy tính ta thấy được phương trình không có nghiệm hữu tỉ, mà chỉ có hai nghiệm vô tỉ. Ta thấy nếu (*) thì hai vế của phương trình bằng nhau nên ta phân tích ra thừa số .

    Ta có:

    (do nên khi đặt làm thừa số thì biểu thức trong dấu (.) luôn dương ).

    là nghiệm của phương trình đã cho.

    Chú ý : Mẫu chốt của bài toán là ta có nhận xét (*), từ đó ta mới định hướng

    tìm cách phân tích ra thừa số . Tuy nhiên trong nhiều bài toán thì việc tìm được nhân tử chung không còn đơn giản vậy nữa.

    Ví dụ 8: Giải phương trình: .

    Giải:

    Với phương trình ta không gặp được sự may mắn như phương trình trên, bằng cách sử dụng MTBT ta thấy phương trình có hai nghiệm vô tỉ, nếu ta linh hoạt một chút ta sẽ nghĩ đến thừa số chung là một tam thức bậc hai có hai nghiệm . Vấn đề tam thức ở đây là tam thức nào? Các bạn thử nghĩ xem nếu biết hai nghiệm của tam thức thì ta có thể xác định được tam thức đó hay không? Chắc chúng ta sẽ trả lời là có nhờ vào định lí đảo của định lí Viet. Áp dụng định lí Viet ta tính được ( sử dụng MTBT) . Vậy thừa số chúng mà ta cần phân tích là tam thức nên ta biến đổi như sau:

    Phương trình

    là nghiệm của phương trình.

    Chú ý : 1) Để tạo ra thừa số ngoài cách biến đổi như trên ta còn có thể làm cách khác như sau:

    Cách 2: Vì không là nghiệm phương trình nên.

    Phương trình

    Vì (*) vô nghiệm, nên phương trình có hai nghiệm: .

    2) Nếu như chúng ta không có máy tính để xác định được thừa số chung là thì ta là thế nào ?.

    Trước hết ta thêm một lượng vào hai vế:

    .

    Ta chọn m,n sao cho: , từ đây ta có: .

    3) Ta thấy cả hai cách biến đổi đều làm xuất hiện thừa số chung . Tuy nhiên cách thứ 2 sẽ thuận lợi hơn cách thứ nhất vì ở cách thứ 2 sau khi đặt thừa số ta chỉ còn phải giải quyết phương trình (*), còn với cách thứ nhất thì ta phải giải quyết biểu thức trong dấu (.) phức tạp hơn nhiều. Hơn nữa với cách biến đổi thứ hai chúng ta dễ sáng tạo ra các bài toán hơn cách thứ nhất.

    Ví dụ 9: Giải phương trình : .

    Giải: Điều kiện : .

    Ta thấy không là nghiệm của phương trình nên ta có:

    Phương trình . Bằng cách làm như đã nêu ở phần nhận xét ta tìm được , do đó ta thêm vào hai vế của phương trình lượng :

    Phương trình

    (1).

    * Nếu

    .

    Khi đó (1) đúng là một nghiệm của phương trình.

    * Nếu

    Ta có: (a) có hai nghiệm và

    (b)

    .

    Vậy phương trình có bốn nghiệm: .

    Khi muốn thêm bớt bằng cách nhân, chia một biểu thức thì ta phải kiểm tra xem biểu thức đó có luôn khác không hay không ?

    Ví dụ 10: Giải phương trình:

    .

    Giải: Đk : .

    Đặt : ( I)

    Ta thấy phương trình có nghiệm .Ta biến đổi như sau:

    (Vì hai pt: và vô nghiệm ). .

    Kết hợp ( I) và ( II) ta có hệ :

    .

    Thay vào phương trình ban đầu ta thấy chỉ nghiệm thỏa mãn.

    Vậy phương trình đã cho có hai nghiệm và .

    Ví dụ 11 : Giải bất phương trình : .

    Giải: Điều kiện :

    Bất phương trình .

    .

    Kết hợp điều kiện nghiệm bất phương trình : .

    VÀ dĩ nhiên là thêm mấy bài tập để các bạn luyện tập

    Giải các phương trình sau:

    1)

    2)

    3)

    4)

    5) .

    6)

    7) )

    8)

    9)

    10)

    11)

    12)

    13)

    Nguyễn Tất Thu @ 21:00 20/02/2012

    Số lượt xem: 12843

    --- Bài cũ hơn ---

  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác

    --- Bài mới hơn ---

  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải Toán 10 Bài 2. Hàm Số Y = Ax + B
  • Cđ Pt Đt Y = Ax + B Chuyen De Viet Phuong Trinh Duong Thang Yax B Doc
  • Trên Tập Số Phức, Phương Trình: (Z^4+4=0) Có Bao Nhiêu Nghiệm?
  • Giải Phương Trình 6 Ẩn
  • Trong các kí thì chúng ta thường bắt gặp các phương trình lượng giác và những bài phương trình lượng giác này đã gây không ít khó khăn đối với nhiều em học học sinh, có lẽ lí do mà các em học sinh thường lo sợ khi giải các phương trình lượng giác là có nhiều công thức biến đổi lượng giác nên không biết sử dụng công thức nào để biến đổi phương trình đã cho. Trong chuyên đề này tôi xin trao đổi một chút kinh nghiệm nho nhỏ với các em học sinh đang học lớp 11,12 và những em đang ngày đêm ôn tập để hướng tới kì thi ĐH năm tới.

    Trước hết thì các bạn cần nắm được nh ữ ng phương trình lượng giác thường gặp. Trong những phương trình này tôi xin bàn với các bạn một chút về phương trình đẳng cấp đối với sin và cos.

    Với lí do: về dạng này SGK chỉ trình bày cho chúng ta phương trình đẳng cấp bậc hai mà trong các kì thi ta vẫn thấy xuất hiện những phương trình đẳng cấp bậc ba hay cao hơn. Minh chứng là đề thi khối B – 2008

    “Giải phương trình : ( ĐH Khối B – 2008 ).”

    Trước hết ta nhớ lại khái niệm biểu thức gọi là đẳng cấp bậc k nếu .

    Từ đây ta có thể định nghĩa được phương trình đẳng cấp bậc k đối với phương trình chứa sin và cos là phương trình có dạng trong đó:

    Tuy nhiên ta xét phương trình : mới nhìn ta thấy đây không phải là phương trình đẳng cấp, những các bạn lưu ý là nên ta có thể viết lại phương trình đã cho như sau: , dễ thấy phương trình này là phương trình đẳng cấp bậc 3. Do vậy với phương trình lượng giác thì ta có thể định nghĩa lại khái niệm phương trình đẳng cấp như sau:

    “Là phương trình có dạng trong đó luỹ thừa của sinx và cosx cùng chẵn hoặc cùng lẻ.”

    Cách giải: Chia hai vế phương trình cho (k là số mũ cao nhất) ta được phương trình một hàm số là .

    Ví dụ: Giải các phương trình sau

    1) Giải bài thi ĐH Khối B – 2008 nêu trên

    2)

    Những phương trình trên xin dành cho các bạn tự giải (vì đã có phương pháp giải).

    Bây giờ tôi xin đi vào cách phân tích để tìm lời giải cho loại phương trình mà chúng ta không ưa gì mấy mà ta thường gọi là phương trình lượng giác không mẫu mực. Không riêng gì phương trình lượng giác không mẫu mực mà đối với mọi phương trình đại số hay phương trình mũ, logarit.. để giải những phương trình này ta phải tìm cách biến đổi phương trình đã có cách giải và một trong những phương pháp ta thường dùng là biến đổi về phương trình tích và đưa về phương trình chỉ chứa một hàm số lượng giác.

    Giải phương trình : (Trích đề thi ĐH Khối A – 2008 )

    Với bài toán này có lẽ khó khăn mà chúng ta gặp phải là đó là sự xuất hiện hai cung và cung . Các bạn lưu ý là ta luốn tính được giá trị đúng các giá trị lượng giác của các cung có dạng trong đó nên điều đầu tiên ta nghĩ tới là sử dụng công thức cộng để phá bỏ hai cung đó

    Ta có:

    Nên phương trình đã cho

    * Để phá bỏ hai cung mà gây khó khăn cho chúng ta ngoài cách đã nêu ở trên ta có thể làm theo cách khác như sau:

    .

    .

    * Ta thấy sau khi phá bỏ hai cung và cung thì trong phương trình chỉ còn lại một cung duy nhất nên ta dẽ biến đổi hơn. Điều này cũng hoàn toàn tự nhiên thôi phải không các bạn? Khi giải các bài toán toán học hay các bài toán trong cuộc sống đặc biệt là bài toán so sánh thì điều chúng ta cần làm là đưa về cùng một đơn vị hay là cùng một dạng. Chẳng hạn tôi xin nêu ví dụ đơn giản nhưng vô cùng thú vị mà tôi thường hỏi các em học sinh là 5 quả cam trừ 3 quả cam còn mấy quả ? và học sinh chỉ cười và trả lời ngay bằng hai quả. Thế tôi hỏi tiếp 5 quả cam trừ 3 quả táo bằng bao nhiêu? Lúc này trên khuôn mặt các em không còn những nụ cười nữa mà thay vào đó là một sự tò mò và cuối cùng thì các em trả lời là không trừ được, dĩ nhiên câu hỏi tiếp theo là vì sao? Các em trả lời là vì không cùng một loại!

    Chắc các em hiểu tôi muốn nói điều gì rồi chứ ?

    Vậy nguyên tắc thứ nhất tôi xin đưa ra cho các bạn là:

    Ví dụ 2: Giải phương trình : ( ĐH Khối D – 2006 ).

    Lời giải:

    Vận dụng nguyên tắc trên ta sẽ chuyển hai cung về cung

    Áp dụng công thức nhân đôi và nhân ba ta có:

    Đặt .

    Ta có:

    Từ đây các bạn tìm được

    Chú ý : * Trong SGK không đưa ra công thức nhân ba tuy nhiên các em cũng nên biết công thức này nếu trong lúc khó khăn có thể mang ra sử dụng vì chứng minh nó không mấy khó khăn

    * Cách giải trên không phải là cách giải duy nhất và cũng không phải là cách giải hay nhất nhưng cách giải đó theo tôi nó tự nhiên và các bạn dẽ tìm ra lời giải nhất. Cách giải ngắn gọn và đẹp nhất đối với phương trình trên là ta biến đổi về phương trình tích như sau

    PT Leftrightarrow (cos3x-cosx)-(1-cos2x)=0 Leftrightarrow-2sin2x.sinx-2sin^2x=0 Chú ý Ví dụ 5 Biến đổi tích thành tổng và ngược lại Ví dụ 7 Ví dụ 8 Ví dụ 9 Ví dụ 10 [/B]: Giải phương trình ( ĐH Khối D – 2003 ).

    Phương trình

    Trên là một số nguyên tắc chung thường được sự dụng trong các phép biến đổi phương trình lượng giác. Mục đích của các phép biến đổi đó là nhằm :

    1. Đưa phương trình ban đầu về phương trình lượng giác thường gặp (Thường là đưa về phương trình đa thức đối với một hàm số lượng giác).

    Ví dụ 1: Giải phương trình : ( ĐH Công Đoàn – 2000).

    Phương trình . Đây là phương trình đẳng cấp bậc ba nên ta chia hai vế của phương trình cho (do ), ta được phương trình :

    thỏa điều kiện .

    Nhận xét: Để giải phương trình này ngay từ đầu ta có thể chia hai về của phương trình cho hoặc sử dụng công thức và chuyển phương trình ban đầu về phương trình chỉ chứa hàm tan như trên.

    ( Ví dụ 2: Giải phương trình : ĐH Khối B – 2003 ).

    Phương trình

    (do )

    .

    Chú ý : Ta cần lưu ý đến công thức: .

    ( Ví dụ 3: Giải phương trình : HVBCVT TPHCM – 2001 ).

    Nên phương trình

    Chú ý : Ta cần lưu ý đến công thức

    .

    .

    Ví dụ 4: Giải phương trình: ( ĐH Khối D – 2005 ).

    Nên phương trình .

    .

    : Tức là ta biến đổi phương trình 2. Đưa phương trình về phương trình dạng tích về dạng

    . Khi đó việc giải phương trình ban đầu được quy về giải hai phương trình : .

    Trong mục đích này, ta cần làm xuất hiện nhân tử chung.

    * Các biểu thức ; ; ; nên chúng có thừa số chung là .

    * Các biểu thức có thừa số chung là .

    * có thừa số chung . Tương tự có thừa số chung .

    Giải phương trình: Ví dụ 1: ( ĐH Khối B – 2005 ).

    Phương trình

    .

    .

    Ngoài cách biến đổi trên, ta có thể biến đổi cách khác như sau

    Phương trình

    Mặc dù hai cách biến đổi trên khác nhau nhưng chúng đều dựa trên nguyên tắc “ . đưa về một cung”.

    Giải phương trình: Ví dụ 2: ( Dự bị Khối D – 2003 ).

    Phương trình

    .

    Phương trình

    .

    Giải:

    Phương trình

    ( Lưu ý : ).

    Nhận xét: Khi sử dụng công thức nhân đôi, ta cần lưu ý là có ba công thức để thay nên tuy từng phương trình mà chúng ta chọn công thức phù hợp.

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Hệ Pt Bằng Pp Thế Vnxike2 Ppt

    --- Bài mới hơn ---

  • Cách Giải Phương Trình Bậc 3 Nhanh Chóng
  • Giải Phương Trình Lượng Giác Bằng Phương Pháp Biến Đổi Công Thức Lượng Giác
  • Chương Iii. §3. Giải Hệ Phương Trình Bằng Phương Pháp Thế
  • Học Cách Giải Phương Trình Bậc 3 Mà Học Sinh Nào Cũng Phải Biết
  • Chuyên Đề Phương Trình Lượng Giác
  • Mục tiêu

    – HS hiểu được cách biến đổi hệ phương trình bằng phương pháp thế

    – HS nắm vững cách giải hệ phương trình bằng phương pháp thế .

    – HS biết xử lí các trường hợp đặc biệt (hệ vô nghiệm hoặc vô số nghiệm )

    II. Chuẩn bị

    Giáo viên: SGK , máy chiếu .

    2. Học sinh : SGK, bảng nhóm , bút dạ ….

    HS1. Kiểm tra (x;y) = (2; – 1) có là nghiệm của hệ phương trình sau không?

    HS2:Đoán nhận số nghiệm của hệ phương trình sau và minh hoạ bằng đồ thị.

    Kiểm tra bài cũ:

    Tiết 33:

    GIẢI HỆ PHƯƠNG TRÌNH

    BẰNG PHƯƠNG PHÁP THẾ

    Ví dụ: Xét hệ phương trình

    B1:Từ PT(1) biểu diễn x theo y

    B2: Ta có hệ PT(II) tương đương hệ PT(I).

    Giải hệ PT(II).Khi đó nghiệm của hệ PT(II) chính là nghiệm của hệ PT(I)

    Từ PT (2′) ta có : y = – 5

    Vậy hệ PT(I) đã cho có nghiệm là (- 13;-5)

    Thế x từ PT (1′) vào PT (2).

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    Thay y = – 5 Vào PT(1′)

    ta có : x = – 13

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG

    PHƯƠNG PHÁP THẾ

    1. Quy tắc thế

    Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương thông qua hai bước :

    Bước 1: Từ một phương trình của HPT ban đầu ta biểu diễn một ẩn theo ẩn kia ta được phương trình (*) .

    Bước 2: Thay phương trình (*) vào phương trình còn lại ta được phương trình (**) . Thay các phương trình của HPT (I) bởi các phương trình (*) và (**) ta được HPT mới tương đương HPT ban đầu.

    2.Vận dụng

    Ví dụ 2

    Giải hệ phương trình

    Giải

    Vậy hệ (II) có nghiệm duy nhất là (2 ; 1)

    Trong hệ phương trình nếu ẩn nào của phương trình có hệ số bằng 1 hoặc -1 ta nên biểu diễn ẩn đó theo ẩn còn lại

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ )

    Giải

    Vậy hệ phương trình (II) có nghiệm duy nhất là (7 ;5 )

    ?1

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    Ta có

    Đặc điểm PT một ẩn

    Số ngiệm của hệ

    HPT đã cho có một nghiệm duy nhất

    HPT đã cho vô nghiệm

    HPT đã cho có vô số nghiệm

    Đặc điểm

    Ví dụ

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    3y = 3

    1 nghiệm duy nhất

    0y = 9

    Vô nghiệm

    0x = 0

    vô số nghiệm

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    1. Quy tắc thế

    2. Áp dụng

    Chú ý :

    * Số nghiệm của phương trình một ẩn trong hệ phương trình mới chính là số nghiệm của hệ đã cho.

    Ví dụ 3

    Giải hệ phương trình

    Giải

    ?2

    Minh hoạ hình học

    Vậy HPT(III) vô số nghiệm

    Do d1 trùng với d2 nên hệ có vô số nghiệm

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    d1

    d2

    ?3

    Cho hệ phương trình

    Bằng minh hoạ hình học và bằng phương pháp thế ,chứng tỏ rằng hệ (IV) vô nghiệm.

    Nhóm 1

    Minh hoạ hình học

    Nhóm 2

    Giải phương trình bằng phương pháp thế

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    1)Dùng quy tắc thế biến đổi hệ đã cho thành hệ mới ,trong đó có một phương trình một ẩn.

    2)Giải phương trình một ẩn vừa có ,rồi suy ra nghiệm của hệ đã cho.

    *Tóm tắc cách giải hệ phương trình bằng phương pháp thế :

    GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ

    HƯỚNG DẪN VỀ NHÀ

    Học thuộc quy tắc thế , xem lại cách giải

    hệ phương trình bằng phương pháp thế .

    – Bài tập : 12 đến 15 SGK trang15

    CẢM ƠN CÁC THẦY CÔ GIÁO CÙNG CÁC EM

    ĐÃ NHIỆT TÌNH THAM GIA TIẾT HỌC

    --- Bài cũ hơn ---

  • Chương Iv. §3. Phương Trình Bậc Hai Một Ẩn
  • Giáo Án Đại Số Lớp 9 Tiết 50: Phương Trình Bậc Hai Một Ẩn
  • Giáo Án Môn Đại Số Lớp 9 Năm 2009
  • Cách Nhẩm Nghiệm Phương Trình Bậc Hai
  • Cách Giải Một Số Phương Trình Quy Về Phương Trình Bậc 2
  • Chuyên Đề Pt Và Bpt Lớp 8

    --- Bài mới hơn ---

  • Chuyên Đề: Rèn Kỹ Năng Giải Phương Trinh Đại Số 8
  • Chuyên Đề: Phương Trình Lớp 8
  • Chuyên Đề Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8
  • Đề Cương Ôn Hkii Lớp 8 (New)
  • Giải Bài Tập Ngữ Văn Lớp 8 Bài 18: Nhớ Rừng
  • MỤC LỤC

    PHẦN I: MỞ ĐẦU

    Trang 2

    1/ Lí do chọn đề tài

    Trang 2

    2/ Mục đích nghiên cứu

    Trang 2

    3/ Nhiệm vụ nghiên cứu

    Trang 3

    4/ Pham vi và đối tượng nghiên cứu

    Trang 3

    5/ Phương pháp nghiên cứu

    Trang 3

    CHƯƠNG I: Cơ sở lý luận và thực tiễn

    Trang 3

    1/ Cơ sở lý luận

    Trang 3

    2/ Cơ sở thực tiễn

    Trang 4

    CHƯƠNG II: Các biện pháp

    Trang 5

    1/ Những giải pháp mới của đề tài.

    Trang 5

    2/ Các phương trình thường gặp

    Trang 5

    3/ Các dạng bất phương trình thường gặp

    Trang 15

    CHƯƠNG III: Thực nghiệm sư phạm

    Trang 22

    1/ Mục đích thực nghiệm

    Trang 22

    2/ Nội dung thực nghiệm

    Trang 22

    3/ Kết quả thực nghiệm và một số chú ý

    Trang 31

    PHẦN III: KẾT LUẬN

    Trang 33

    Tài lệu tham khảo

    Trang 35

    Chương II . Các biện pháp

    1. Những giải pháp mới của đề tài

    ( Đề tài đưa ra các giải pháp như sau:

    – Sắp xếp các dạng phương trình bất phương trình theo các mức độ.

    – Xây dựng các phương pháp giải cơ bản theo từng dạng phương trình và bất phương trình.

    – Sửa chữa các sai lầm thường gặp của học sinh trong giải toán.

    – Củng cố các phép biến đổi và hoàn thiện các kỹ năng giải phương trình và bất phương trình.

    – Tìm tòi những cách giải hay, khai thác bài toán.

    a) Đối với học sinh yếu, kém: Củng cố kiến thức cơ bản

    + Phương pháp giải phương trình đưa được về dạng ax + b = 0.

    + Phương pháp giải phương trình tích.

    + Phương pháp giải phương trình chứa ẩn ở mẫu.

    +Bất phương trình dạng: (hoặc , , )

    b) Đối với học sinh đại trà: Phát triển tư duy, kỹ năng giải phương trình và phương trình

    + Phát triển kỹ năng giải các dạng phương, khai thác bài toán.(nâng cao)

    + Đưa ra cách giải hay, sáng tạo, cho các dạng phương trình và bất phương trình thường gặp

    2. Các phương trình thường gặp

    a. Củng cố kiến thức cơ bản về phương trình

    ( Phương trình đưa được về dạng ax + b = 0 (hoặc ax = c).

    ( Dạng1: Phương trình chứa dấu ngoặc:

    Phương pháp chung:

    – Thực hiện bỏ dấu ngoặc.

    – Thực hiện phép tính ở hai vế và chuyển vế đưa phương trình về dạng ax = c.

    ( Chú ý: Nếu a 0, phương trình có nghiệm x =

    Nếu a = 0, c 0, phương trình vô nghiệm

    Nếu a = 0, c = 0, phương trình có vô số nghiệm

    Ví dụ 1: Giải phương trình: 5 – (x – 6) = 4(3 – 2x) (BT-11c)-SGK-tr13)

    Gợi ý: Bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.

    Giải: 5 – (x – 6) = 4(3 – 2x)

    5 – x + 6 = 12 – 8x

    – x + 8x = 12 – 11

    7x = 1

    x = Vậy phương trình đã cho có nghiệm x =

    Ví dụ 2: Giải phương trình: (x – 1) – (2x – 1) = 9 – x (2) (BT-17f)-SGK-tr14)

    Gợi ý: Bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.

    Lời giải sai: (x – 1) – (2x – 1) = 9 – x

    x – 1 – 2x – 1 = 9 – x (bỏ dấu ngoặc sai)

    x – 2x – x = 9 – 2 (chuyển vế không đổi dấu)

    -2x = 7 (sai từ trên)

    x = 7 – 2 = 5 (tìm nghiệm sai)

    Sai lầm của học yếu kém thường gặp ở đây là:

    Thực hiện bỏ dấu ngoặc sai: không đổi dấu hạng tử trong dấu ngoặc

    Thực hiện chuyển vế sai: không đổi dấu hạng tử đã chuyển vế

    Tìm nghiệm sai: số ở vế phải trừ số ở vế trái

    Lời giải đúng: (2) x – 1 – 2x + 1 = 9 – x

    x – 2x + x = 9

    0x = 7

    Vậy phương trình đã cho vô nghiệm

    Qua ví dụ này, giáo viên củng cố cho học sinh:

    Quy tắc bỏ dấu ngoặc, quy tắc nhân, quy tắc

    --- Bài cũ hơn ---

  • Sách Giải Bài Tập Toán Lớp 8 Bài 4: Phương Trình Tích
  • Các Dạng Toán Về Phương Trình Bậc Nhất Một Ẩn Và Bài Tập Vận Dụng
  • Unit 1 Lớp 8 A Closer Look 1
  • Giải Bài Tập Sbt Tiếng Anh Lớp 8 Chương Trình Mới Unit 1: Leisure Activities
  • Giải Sbt Tiếng Anh Lớp 8 Unit 1: Leisure Activities
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ

    --- Bài mới hơn ---

  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Họ và tên : Đặng Việt Anh

    Lớp : 10A3

    Trường : THPT Ân Thi

    Nhóm :. . . . . .

    Gồm hs:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ

    I, Tư tưởng đặt ẩn phụ

    Xác định phương trình cơ bản:

    Ví dụ: phương trình t2 – 3t + 2

    + chọn t = ( phương trình có dạng

    + chọn t = ( phương trình có dạng

    II, Các phương pháp đặt ẩn phụ

    1, Đặt 1 ẩn phụ

    Một số kiểu đặt thường gặp

    + ( Ta nên đặt t = (

    + ( Ta nên đặt

    + ( Ta nên đặt

    2, Chia làm xuất hiện ẩn phụ

    Chia 2 vế phương trình cho hoặc x, x2 đại lượng thích hợp.

    Trước khi chia cho 1 lượng nào đó ta phải kiểm tra lượng đó bằng 0 có là nghiệm phương trình không

    III, Bài tập hướng dẫn

    Bài tập 1: Giải phương trình

    Bài giải:

    B1: Đặt ()

    B2: Biến đổi căn thức bằng cách bình phương

    (1)

    Ta nhận thấy

    B3: Thay vào phương trình

    Giải pt ta được nghiệm không thỏa mãn điều kiện )

    B4: Thay t =1 vào (1) ta sẽ được nghiệm x.

    t=1 (

    ( phương trình có 2 nghiệm x=0 (TM) và x=-2 (TM).

    KL: x=0 và x=-2 là nghiệm của pt

    Bài tập 2: Giải phương trình .

    Bài giải:

    Tương tự như các bước trên:

    Đk:

    Đặt

    (2)

    Thay vào pt:

    Giải pt có 2 nghiệm ( loại không thỏa mãn điều kiện)

    Thay t=5 vào (2)

    Giải pt suy ra x=143 (KTM) x=3(TM)

    KL: x=3 là nghiệm của pt

    Thay vào phương trình:

    (loại ktm đk)

    Thay t=2 vào (3)

    Giải pt suy ra cả 2 đều TM

    KL:

    Ví dụ 4: giải pt

    Bài giải:

    Bình phương khử căn:

    Chia cả 2 vế cho ta đc:

    Đặt

    loại t=0 vì k tm đk

    Thay t=5 vào pt

    Thay x=1 và x=4 vào pt ta thấy x=4 là nghiệm thỏa mãn còn x=1 không thỏa mãn

    --- Bài cũ hơn ---

  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Pp Giải Pt&bpt Vô Tỷ
  • 4 Cách Giải Phương Trình Vô Tỉ Cực Hay
  • Cđ Một Số Dạng Pt Vô Tỷ Và Cách Giải

    --- Bài mới hơn ---

  • Cách Giải Bất Phương Trình Vô Tỷ Chứa Căn
  • Hướng Dẫn Học Sinh Lớp 9 Một Số Phương Pháp Giải Phương Trình Vô Tỉ
  • 4 Cách Giải Phương Trình Vô Tỉ Cực Hay
  • Pp Giải Pt&bpt Vô Tỷ
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Published on

    1. 1. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc MỤC LỤC PHẦN I – PHẦN MỞ ĐẦU………………………………………………………………………….. Trang 2 I/ Lí do chọn đề tài ………………………………………………………………………………………. Trang 2 II/ Mục đích nghiên cứu đề tài ………………………………………………………………………. Trang 2 III/ Phạm vi nghiên cứu – đối tượng nghiên cứu……………………………………………… Trang 3 IV/ Các phương pháp nghiên cứu và tiến hành ……………………………………………….. Trang 3 PHẦN II – NỘI DUNG CỦA ĐỀ TÀI…………………………………………………………… Trang 3 I/ Cơ sở lý luận……………………………………………………………………………………………. Trang 3 II/ Cơ sở thực tiễn………………………………………………………………………………………… Trang 4 III/ Nội dung và phương pháp nghiên cứu…………………………………………………….. Trang 5 1. Khái niệm phương trình vô tỉ…………………………………………………………………….. Trang 5 2. Phương pháp chung………………………………………………………………………………….. Trang 5 3. Phương pháp giải phương trình vô tỉ cơ bản………………………………………………… Trang 6 3.1) Phương pháp nâng lên luỹ thừa ……………………………………………………………. Trang 6 3.2) Phương pháp đưa về pt chứa ẩn trong dấu giá trị tuyệt đối ……………………… Trang 13 3.3) Phương pháp đặt ẩn phụ ……………………………………………………………………… Trang 15 3.4) Phương pháp đưa về hệ phương trình……………………………………………………. Trang 20 3.5) Phương pháp Áp dụng bất đẳng thức…………………………………………………….. Trang 25 3.6) Phương pháp chứng minh nghiệm duy nhất …………………………………………… Trang 28 3.7) Phương pháp sử dụng biểu thức liên hợp – Trục căn thức………………………… Trang 29 IV/ Kết quả…………………………………………………………………………………………………. Trang 31 PHẦN III. KẾT LUẬN………………………………………………………………………………… Trang 31 TÀI LIỆU THAM KHẢO ……………………………………………………………………………. Trang 32 PHẦN I – PHẦN MỞ ĐẦU. I- LÍ DO CHỌN ĐỀ TÀI: Một trong những vấn đề rất cơ bản của đại số khối THCS là việc nắm được các phương trình sơ cấp đơn giản và cách giải những phương trình đó với những đối tượng là học sinh đại trà, ngoài ra mở rộng các phương trình đó ở dạng khó hơn, phức tạp hơn đối với đối tượng học sinh khá – giỏi. Thực trạng số lượng bài về phương trình vô tỷ trong SGK rất ít và là những bài đơn giản thường đưa về phương trình trị tuyệt đối hoặc bình phương mất căn đưa về Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 1
    2. 3. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc IV- CÁC PHƯƠNG PHÁP NGHIÊN CỨU VÀ TIẾN HÀNH : 1. Phương pháp nghiên cứu: + Tham khảo thu thập tài liệu. + Phân tích, tổng kết kinh nghiệm. + Kiểm tra kết quả chất lượng học sinh. + Đưa ra bàn luận theo tổ, nhóm chuyên môn, cùng nhau thực hiện. + Phương pháp điều tra, trắc nghiệm. + Ngoài ra tôi còn sử dụng một số phương pháp khác. 2. Phương pháp tiến hành: Thông qua các dạng phương trình vô tỉ cơ bản đưa ra phương pháp giải, hướng khắc phục những sai lầm thường gặp và đưa ra các dạng bài tập tự giải. PHẦN II- NỘI DUNG CỦA ĐỀ TÀI I- CƠ SỞ LÝ LUẬN: Như chúng ta biết Toán học là một môn khoa học công cụ, nó giữ một vai trò chủ đạo trong các nhà trường cũng như đối với các ngành khoa học khác. Toán học như một kho tàng tài nguyên vô cùng phong phú và quí giá nếu ai đã đi sâu tìm hiểu, khai thác thì sẽ thấy rất mê say, ham muốn khám phá và thấy được Toán học cũng thú vị, lãng mạn không kém những môn khoa học khác. Các bậc phụ huynh, các thầy cô giáo, các thế hệ học sinh luôn mơ ước học giỏi bộ môn Toán, tuy nhiên để đạt được điều đó thật chẳng dễ dàng gì. Hiện nay, trong các nhà trường đặc biệt là nhà trường THCS, ngoài việc dạy kiến thức cơ bản cho HS thì việc dạy cách học, cách nghiên cứu và phát triển kiến thức cho các em rất được chú trọng. Với mong muốn giúp các em học sinh hiểu bài cơ bản và ngày một say mê bộ môn Toán, bản thân mỗi người giáo viên phải tự mình tìm ra những phương pháp giải sao cho phù hợp với từng đối tượng học sinh và kích thích lòng ham muốn học Toán của các em, từ đó tìm ra được những học sinh có năng khiếu về bộ môn này, để có thể bồi dưỡng các em trở thành những học sinh giỏi, có ích cho xã hội. Phương trình là một mảng kiến thức quan trọng trong chương trình Toán phổ thông. Giải phương trình là bài toán có nhiều dạng và giải rất linh hoạt, với nhiều học sinh kể cả học sinh khá giỏi nhiều khi còn lúng túng trước việc giải một phương trình, đặc biệt là phương trình vôi tỉ. Phương trình vô tỉ là một đề tài lý thú vị của Đại số, đã lôi cuốn nhiều người nghiên cứu say mê và tư duy sáng tạo để tìm ra lời giải hay, ý tưởng phong phú và tối ưu. Tuy đã được nghiên cứu từ rất lâu nhưng phương trình vô tỉ mãi mãi vẫn còn là đối tượng mà những người đam mê Toán học luôn tìm tòi, học hỏi và phát triển tư duy. Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 3
    3. 5. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc Qua kết quả khảo sát, kiểm tra trước khi áp dụng đề tài với 35 học sinh tôi thấy kết quả tiếp thu về giải phương trình vô tỉ như sau: Điểm dưới 5 Điểm 5 – 6 Điểm 7 – 8 Điểm 9 – 10 SL % SL % SL % SL % 18 51.4 12 34.3 4 11.4 1 2.9 Một trong những nguyên nhân dẫn tới những khó khăn trên của HS đó là các em chưa phân biệt được các dạng phương trình vô tỉ và phương pháp giải nó, việc tìm tòi, khám phá về phương trình vô tỉ cũng gặp rất nhiều khó khăn vì các tài liệu về phương trình vô tỉ cũng chưa nhiều. Để giúp các em HS nắm đúng, nắm chắc từng dạng và phương pháp giải từng dạng từ đó phát triển năng lực tư duy nhằm đem lại niềm vui và hứng thú học tập cho học sinh, tôi mạnh dạn viết sáng kiến kinh nghiệm ”Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS ” áp dụng cho khối THCS với hy vọng phần nào tháo gỡ những khó khăn cho các em HS khi gặp dạng phương trình này và cũng là một tài liệu nhỏ để tham khảo đối với các bạn đồng nghiệp. III- NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU: 1. KHÁI NIỆM PHƯƠNG TRÌNH VÔ TỈ: a) Khái niệm: Phương trình vô tỉ là phương trình chứa ẩn dưới dấu căn. b) Các ví dụ: a) 11 =−x b) 2173 =+−+ xx c) 12 +− xx =3 d) 3 23 33 2 1 1 4 11 x x x xx − − − = +− 2. PHƯƠNG PHÁP CHUNG: Để giải phương trình vô tỉ ta tìm cách khử dấu căn. Cụ thể: – Tìm ĐK của phương trình. – Biến đổi đưa phương trình về dạng đã học. – Giải phương trình vừa tìm được. – So sánh kết quả với ĐK rồi kết luận nghiệm. 3. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ CƠ BẢN: 3.1. Phương pháp 1: Phương pháp nâng lên luỹ thừa: a) Dạng 1: ( )f x c= (c là hằng số) (1) Đây là dạng đơn giản nhất của phương trình vô tỉ Sơ đồ cách giải: – Nếu c < 0 phương trình (1) vô nghiệm. Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 5
    4. 8. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc 2 2 22 (x) 0 (x) 0 g(x) 0 g(x) 0 (x) g(x) 0 2 (x).g(x) (x) g(x) 4 (x).g(x) (x) g(x) f f c f f c f f c f ≥  ≥ ≥  ⇔ ≥ ⇔  − − ≥   = − −   = − −  * Chú ý: Nếu ta có: ( ) g( )f x x c− = thì ta giải như sau: ( ) 2 2 (x) 0 (x) 0 ( ) g( ) ( ) g( ) g(x) 0 g(x) 0 f(x) g(x) c 2 (x)f(x) g( ) f f f x x c f x x c c gx c  ≥ ≥  − = ⇔ = + ⇔ ≥ ⇔ ≥    = + += +  2 2 22 2 (x) 0 (x) 0 g(x) 0 g(x) 0 (x) g(x) c 0 2 (x) (x) g(x) c 4 (x) (x) g(x) c f f f c g f c g f ≥  ≥ ≥  ⇔ ≥ ⇔  − − ≥   = − −   = − −  Ví dụ 1: Giải phương trình: 2 3 1 0x x+ + − = (1) Gợi ý: Ta có: 3 2 3 0 2 3 1 0 2 1 0 1 x x x x x x  + = = −  + + − = ⇔ ⇔  − =  = (vô nghiệm) Vậy phương trình đã cho vô nghiệm. Ví dụ 2: Giải phương trình: 1 2 1 5x x− + − = (1) Gợi ý: ĐK 1 1 0 11 2 1 0 2 x x x x x ≥ − ≥  ⇔ ⇔ ≥  − ≥ ≥  Ta có: ( ) 2 1 2 1 5 1 2 1 25x x x x− + − = ⇔ − + − = ( ) ( ) ( ) ( ) 22 27 3 0 2 1 2 1 27 3 4 2 3 1 27 3 x x x x x x x − ≥ ⇔ − − = − ⇔  − + = − 2 1 9 1 9 55 150 725 0 145 x x xx x x x ≤ ≤ ≤ ≤  ⇔ ⇔ ⇔ ==  − + =   = Vậy phương trình có nghiệm duy nhất là x = 5 Ví dụ 3: Giải phương trình: 2 2 9 3 2x x x+ − − − = Gợi ý: Ta có: 2 2 2 2 9 3 2 9 3 2x x x x x x+ − − − = ⇔ + = − − + Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 8
    5. 9. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc ( ) ( ) 2 2 2 2 2 22 1 13 21 13 1 1323 0 21 13 9 3 2 82 16 3 16 644 3 8 x x x x x xx x x x x x x xx x x  − ≤  − ≤  + − − ≥  ≥  ⇔ ⇔+   ≥+ = − − + ⇔   ≥ −   − − = + + − − = +   2 1 13 8 1 13 2 8 42 1 13 281 13 2 152 4 15 32 112 0 28 15 x x x x xx x x x x  − − ≤ ≤ − − ≤ ≤  =+  ≥ ⇔ ⇔ ⇔ − +   =≥  =   − − = −  =  Vậy tập nghiệm của phương trình là: S = 28 4; 15 −      e) Dạng 5: ( ) g( ) ( )f x x h x+ = (1) – Đặt điều kiện: (x) 0 g(x) 0 h(x) 0 f ≥  ≥  ≥ – Bình phương hai vế của (1), ta có: 2 2 (x)g(x) (x) (x) g(x)f h f⇔ = − − . Trở lại dạng 2 * Chú ý: Giải tương tự với dạng: ( ) g( ) ( )f x x h x− = với điều kiện ( ) ( )f x h x≥ Ví dụ 1: Giải phương trình: 8 2 7 1 7 4x x x x+ + + + + − + = (1) Gợi ý: ĐK: 2 7 0 7 7 7 8 2 7 0 1 0 1 0 2 1 7 36 01 7 0 2 x x x x x x x x x x x xx xx x x  + ≥  ≥ − ≥ −≥ −    + + + ≥ ⇔ ⇔ + ≥ ⇔ + ≥ ⇔ ≥    + ≥ +   ≤ −+ − ≥ + − + ≥    ≥ Ta có: (1) ( ) 2 7 1 1 7 4x x x⇔ + + + + − + = Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 9
    6. 10. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc 7 1 1 7 4 1 7 3 7 3 7 0 7 3 1 7 9 7 6 7 5 7 15 7 3 7 9 2(t/ m) x x x x x x x x x x x x x x x x ⇔ + + + + − + = ⇔ + − + = − +  − + ≥ + ≤  ⇔ ⇔  + − + = + + − + + =   ⇔ + = ⇔ + = ⇔ = Vậy phương trình có nghiệm duy nhất là x = 2. Ví dụ 2: Giải phương trình: 2 1 1 2x x x x− + + + = + (1) Gợi ý: ĐK: 2 1 0 1 1 0 1 2 2 0 x x x x x x x  − + ≥ ≥ − + ≥ ⇔ ⇔ ≥ −  ≥ − + ≥ Ta có: (1) 2 2 2 1 1 2 ( 1)( 1) 4 4x x x x x x x x⇔ − + + + + − + + = + + ( ) 3 3 3 2 3 2 2 2 1 4 2 1 2 1 1 4 4 1 0 4 4 0 4 4 0 2 2 2 (t/ m) 2 2 2 x x x x x x x x x x x x x x x x ⇔ + = + ⇔ + = + ⇔ + = + + =  ⇔ − − = ⇔ − − = ⇔ = +  = − Vậy tập nghiệm của phương trình là: { }0;2 2 2;2 2 2S = + − g) Dạng 6: ( ) ( ) ( )f x g x h x+ = Sơ đồ cách giải: ( ) 0 ( ) 0 ( ) 0 ( ) 0 (x) 0 (x) 0 ( ) ( ) 2 ( ). ( ) ( ) 2 ( ). ( ) ( ) (x) g(x) f x f x g x g x h h f x g x f x g x h x f x g x h x f ≥ ≥   ≥ ≥  ⇔ ⇔ ≥ ≥    + + = = − −  Đến đây bài toán trở lại dạng 2 Chú ý: Giải tương tự với dạng: ( ) ( ) ( )f x g x h x− = Ta có: ( ) ( ) ( ) (x) g(x) f(x)f x g x h x h− = ⇔ + = ⇒ Bài toán trở lại dạng 6 Ví dụ 1: Giải phương trình: 3 4 4 2x x x+ + − = (1) Điều kiện: 4 3 4 0 3 4 0 4 4 0 0 x x x x x x x − ≥+ ≥  − ≥ ⇔ ≥ ⇔ ≥   ≥ ≥   Ta có: (1) ( ) ( )3 4 4 2 3 4 4 4x x x x x⇔ + + − + + − = ( ) ( ) ( ) ( ) 4 4 2 3 4 4 4 3 4 4 0 43 4 x x x x x x x x x − =⇔ + + − = ⇔ + − = ⇔ ⇔ =  = Vậy phương trình có nghiệm duy nhất x = 4 Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 10
    7. 11. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc Ví dụ 2: Giải phương trình: 1+x – 7−x = x−12 Gợi ý: ⇔ 1+x = x−12 + 7−x (1) ĐK: 12×7 7x 12x 1x 07x 0x12 01x ≤≤⇔      ≥ ≤ −≥ ⇔      ≥− ≥− ≥+ (2) Bình phương hai vế ta được: )7x)(x12(27xx121x −−+−+−=+ ⇔ )7x)(x12(24x −−=− (3) Ta thấy hai vế của phương trình (3) đều thỏa mãn (2) vì vậy bình phương 2 vế của phương trình (3) ta được: (x – 4)2 = 4(- x2 + 19x- 84) ⇔ 5×2 – 84x + 352 = 0 Phương trình này có 2 nghiệm x1 = 5 44 và x2 = 8 đều thoả mãn (2). Vậy x1 = 5 44 và x2 = 8 là nghiệm của phương trình. h) Dạng 7: ( ) g( ) (x) (x)f x x h k+ = + Sơ đồ cách giải: Điều kiện: (x) 0 g(x) 0 (x) 0 k(x) 0 f h ≥  ≥  ≥  ≥ Bình phương hai vế của phương trình, ta có: (x) g(x) 2 (x)g(x) (x) k(x) 2 (x)k(x)f f h h+ + = + + ( )2 (x)g(x) (x)k(x) (x) k(x) f(x) g(x)f h h⇔ − = + − − ⇒ Bài toán trở lại dạng 5 Ví dụ 1: Giải phương trình : 1+x + 10+x = 2+x + 5+x (1) Gợi ý: ĐK :        ≥+ ≥+ ≥+ ≥+ 05 02 010 01 x x x x ⇔        −≥ −≥ −≥ −≥ 5 2 10 1 x x x x ⇔ x ≥ -1 (2) Bình phương hai vế của (1) ta được: x+1 + x+ 10 + 2 )10)(1( ++ xx = x+2 + x+ 5 + 2 )5)(2( ++ xx ⇔ 2 + )10)(1( ++ xx = )5)(2( ++ xx (3) Với x ≥ -1 thì hai vế của (3) đều dương nên bình phương hai vế của (3) ta được: )5x)(2x()10x)(1x()10x)(1x(44 ++=++++++ Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 11
    8. 12. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc ⇔ 1x)10x)(1x( −−=++ Điều kiện ở đây là x ≤ -1 (4) Ta chỉ việc kết hợp giữa (2) và (4)    −≤ −≥ 1 1 x x ⇔ x = -1 là nghiệm duy nhầt của phương trình (1). Ví dụ 2: Giải phương trình: 2 1 2 16 2 4 2 9x x x x+ + + = + + + (1) Gợi ý: ĐK: 1 2 1 0 2 2 16 0 8 1 2 4 0 2 2 2 9 0 9 2 x x x x x x x x x − ≥+ ≥  + ≥ ≥ − −  ⇔ ⇔ ≥  + ≥ ≥ −   + ≥ − ≥  Ta có: (1) ( ) ( ) ( ) ( )2 1 2 16 2 2 1 2 16 2 4 2 9 2 2 4 2 9x x x x x x x x⇔ + + + + + + = + + + + + + 2 2 4 34 16 2 4 26 36x x x x⇔ + + + = + + (2) Hai vế của (2) không âm. Bình phương hai vế của (2), ta có: ( ) 2 2 2 2 2 2 2 4 34 20 4 4 34 16 4 26 36 4 34 16 2 4 2 4 0 2 0(t/ m) 04 34 16 4 16 16 x x x x x x x x x x x x xx x x x ⇔ + + + + + = + + ⇔ + + = − + − + ≥ ≤  ⇔ ⇔ ⇔ =  =+ + = − +  Vậy phương trình có nghiệm duy nhất là x = 0 * Nhận xét : Phương pháp nâng lên luỹ thừa được sử dụng vào giải một số dạng phương trình vô tỉ quen thuộc, song trong quá trình giảng dạy cần chú ý khi nâng lên luỹ thừa bậc chẵn thì phải có điều kiện để cả hai vế của phương trình đều không âm. Với hai số dương a, b nếu a = b thì a2n = b2n và ngược lại (n= 1,2,3…..) Từ đó mà chú ý điều kiện tồn tại của căn thức, điều kiện ở cả hai vế của phương trình đều dương đây là những vấn đề mà học sinh hay mắc sai lầm, chủ quan, còn thiếu sót khi sử dụng phương pháp này. Ngoài ra còn phải biết phối hợp vận dụng phương pháp này với cùng nhiều phương pháp khác lại với nhau . * Bài tập áp dụng: 1. 42 −x = x- 2 5. x−1 = x−6 – )52( +− x 2. 41 2 ++ xx = x+ 1 6. 3 1−x + 3 2−x = 3 32 −x 3. x−1 + x+4 =3 7. x + 1x + = 1−x + 4+x 4. 3 45+x – 3 16−x =1 Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 12
    9. 13. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc 3.2. Phương pháp 2: Phương pháp đưa về PT chứa ẩn trong dấu giá trị tuyệt đối: Sơ đồ cách giải: 2 ( ) 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) f x f x g x f x g x f x g x f x f x g x  ≥  == ⇔ = ⇔  ≤  = − Ví dụ 1: Giải phương trình: 416249 2 +−=+− xxx (1) Gợi ý: ĐK:    ≥+− ≥+− 04 016249 2 x xx ⇔    ≤ ∀≥− 4 0)43( 2 x xx ⇔ x ≤ 4 Ta có: (1) ⇔ 43 −x = -x + 4⇔    −=− +−=− 4x4x3 4x4x3 ⇔    = = 0x 2x (thỏa mãn) Vậy phương trình đã cho có 2 nghiệm là: x1 = 2; x2 = 0 Ví dụ 2: Giải phương trình: 442 +− xx + 1682 +− xx = 5 (1) Gợi ý: ĐK: x∀ ∈R Ta có: (1) ⇔ 2 2 ( 2) ( 4) 5x x− + − = ⇔ 2−x + 4−x = 5 Ta xét các khoảng: + Khi x < 2 ta có (2) ⇔ 2 – x + 4 – x = 5 ⇔ 6 – 2x = 5 ⇔ x = 0,5 (thoả mãn x < 2) + Khi 2 ≤ x < 4 ta có (2) ⇔ x – 2 + 4 – x = 5 ⇔ 0x + 2 = 5 (phương trình vô nghiệm) + Khi x ≥ 4 ta có (2) ⇔ x – 2 + x – 4 = 5 ⇔ 2x – 6 =5 ⇔ x =5,5 (thoả mãn x ≥ 4) Vậy phương trình đã cho có 2 nghiệm là x1 = 0,5; x2 = 5,5 Ví dụ 3: Giải phương trình: 314 +−− xx + 816 +−− xx = 1 (1) Gợi ý: ĐK: x ≥ 1 Ta có: (1) ⇔ 414)1( +−−− xx + 916)1( +−−− xx = 1 ⇔ 2 )21( −−x + 2 )31( −−x = 1⇔ 21 −−x + 31 −−x =1 (2) – Nếu 1 ≤ x < 5 ta có (2) ⇔ 2- 1−x + 3 – 1−x = 1 ⇔ 1−x =2 ⇔ x = 5 không thuộc khoảng đang xét – Nếu 5 ≤ x < 10 thì (2) ⇔ 1−x – 2 + 3 – 1−x = 1 ⇔ 0x = 0 Phương trình có vô số nghiệm Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 13
    10. 14. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc – Nếu x ≥ 10 thì (2) ⇔ 1−x – 2 + 1−x – 3 = 1 ⇔ 31x =− ⇔ x = 10 (thỏa mãn). Vậy phương trình có vô số nghiệm: 5 ≤ x ≤ 10 Nhận xét : Phương pháp đưa về phương trình chứa ẩn trong dấu giá trị tuyệt đối được sử dụng để giải một số dạng phương trình vô tỉ quen thuộc như trên, song trong thực tế cần lưu ý cho học sinh một số vấn đề sau: – Áp dụng hằng đẳng thức 2 A = A – Học sinh thường hay mắc sai lầm hoặc lúng túng khi xét các khoảng giá trị của ẩn nên giáo viên cần lưu ý để học sinh tránh sai lầm . * Bài tập áp dụng: Giải các phương trình sau: 1) 2 2 1 5x x+ + = 11) 4 4 3x x− + = 2) 2 6 9 2 1x x x− + = − 12) 4 4 5 2x x x+ + = + 3) 2 2 2 1 4 4 4x x x x− + + + + = 13) 2 1 4 4 10x x x x− + − − + = 4) 2 2 2 6 9 2 8 8 2 1x x x x x x− + + + + = − + 14) 2 2 4 4 6 9 1x x x x− + + − + = 5) 2 1 2 1 2x x x x+ − + − − = 15) 3 2 4 4 4 1x x x x− − − + − − = 6) 6 2 2 11 6 2 1x x x x+ − + + + − + = 16) 2 2 5 2 3 2 5 7 2x x x x− + − + + + − = 7) 2 2 2 2 1 5 0x x x x+ − + + − = 17) 45224252642 =−−−+−++ xxxx 8) 2 4 4 2 10x x x− + + = 18) 2 2 1 2 8x x x− + + = 9) 1 1 2 2 4 x x x+ + + + = 19) 05261 4 1 2 =−−++ xx 10) 3 2 1 2 1 2 x x x x x + + − + − − = 20) 2 4 4 2x x x− + = − 3.3. Phương pháp 3: Phương pháp đặt ẩn phụ: a) Dạng 1: Phương pháp đặt ẩn phụ thông thường: Đối với nhiều phương trình vô tỉ, để giải chúng ta có thể đặt ( )t f x= và chú ý điều kiện của t . Nếu phương trình ban đầu trở thành phương trình chứa một biến t Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 14
    11. 15. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc quan trọng hơn ta có thể giải được phương trình đó theo t thì việc đặt phụ xem như “hoàn toàn “. Ví dụ 1: Giải phương trình: 2×2 + 3x + 932 2 ++ xx = 33 Gợi ý: ĐK: ∀ x ∈R Phương trình đã cho tương đương với: 2×2 + 3x + 9 + 932 2 ++ xx – 42= 0 (1) Đặt 932 2 ++ xx = t (t ≥ 0) (Chú ý rằng học sinh thường mắc sai lầm không đặt điều kiện bắt buộc cho ẩn phụ t) Ta có: (1) ⇔ t2 + t – 42 = 0 Phương trình này có hai nghiệm: t1 = 6 , t2 = -7 < 0 (loại) Từ đó ta có: 932 2 ++ xx = 6 ⇔ 2×2 + 3x -27 = 0 Phương trình này có hai nghiệm x1 = 3, x2 = – 2 9 Cả hai nghiệm này đều là nghiệm của phương trình đã cho. Ví dụ 2: Giải phương trình: x + 4 x = 12 (1) Gợi ý: ĐK: x ≥ 0 Đặt 4 x = t (t ≥ 0) ⇒ x = t2 , ta có: (1) ⇔ t2 + t -12 = 0 Phương trình có 2 nghiệm là t = 3 và t = – 4 (loại) Với t = 3 ⇒ 4 x = 3 ⇒ x = 81(thỏa mãn) Vậy x = 81 là nghiệm của phương trình đã cho. Ví dụ 3: Giải phương trình: 1+x + x−3 – )3)(1( xx −+ = 2 (1) Gợi ý: ĐK:    ≥− ≥+ 03 01 x x ⇔    ≤ −≥ 3 1 x x ⇔ 3×1 ≤≤− Đặt 1+x + x−3 = t ≥ 0 ⇒ t2 = 4 + 2 )3)(1( xx −+ ⇒ )3)(1( xx −+ = 2 42 −t (2) Thay vào (1) ta được: (1) 2 2 4t t 2 = − −⇔ ⇔ t2 – 2t = 0 ⇔ t(t-2)= 0 ⇔    = = 2 0 t t + Với t = 0 ⇒ 1+x + x−3 = 0⇒    =− =+ 0x3 01x (vô nghiệm) ⇒ phương trình vô nghiệm. + Với t = 2: (2)⇒ )3)(1( xx −+ = 0 ⇒ x1 = -1; x2 = 3 (thoả mãn) Vậy phương trình đã cho có hai nghiệm là x1 = -1; x2 = 3 Ví dụ 4: Giải phương trình: 2 2 1 1 2x x x x− − + + − = (1) Gợi ý: ĐK: 1x ≥ Nhận xét. 2 2 1. 1 1x x x x− − + − = Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 15
    12. 18. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc Đến đây ta tìm được u, v. Thay u, v vào thì tìm được x. Ví dụ 5: Giải phương trình sau: 2 2 2 2 1 3 4 1x x x x x+ + − = + + Gợi ý: ĐK: 1 2 x ≥ . Bình phương 2 vế ta có: ( )( ) ( )( ) ( ) ( )2 2 2 2 2 2 1 1 2 2 1 2 2 1x x x x x x x x x x+ − = + ⇔ + − = + − − Ta có thể đặt: 2 2 2 1 u x x v x  = +  = − khi đó ta có hệ: 1 5 2 1 5 2 u v uv u v u v  − = = − ⇔  + =  Vì , 0u v ≥ nên ( )21 5 1 5 2 2 1 2 2 u v x x x + + = ⇔ + = − . Giải tiếp ta ìm được x. Chú ý: Các phương trình dạng 2 2 u v mu nvα β+ = + có thể giải như VD4 và VD 5 c) Dạng 3: Phương pháp đặt ẩn phụ không hoàn toàn: Ví dụ 1: Giải phương trình: ( )2 2 2 3 2 1 2 2x x x x+ − + = + + (1) Gợi ý: Đặt 2 2t x= + ; 2t ≥ . Ta có: ( ) ( )2 2 2 3 (1)x 2 2 2 3 3 0 2 3 3 0 1 t x x x t x t x t x = + − + + − + = ⇔ − + − + = ⇔  = − Nếu t = 3 2 2 3 7x x⇔ + = ⇔ = ± Nếu t = x – 1 1 2x⇒ ≥ + . Ta có: 2 2 1 2 2 1 2 x x x x − + = − + ⇔ = (loại) Ví dụ 2: Giải phương trình: ( ) 2 2 1 2 3 1x x x x+ − + = + Gợi ý: Đặt: 2 2 3, 2t x x t= − + ≥ Ta có: ( ) 2 (1) 1 1x t x⇔ + = + ( )2 1 1 0x x t⇔ + − + = ( ) ( ) ( ) ( )2 2 2 2 3 1 2 1 0 1 2 1 0 1 t x x x t x t x t x t x = ⇔ − + − + + − = ⇔ − + + − = ⇔  = − Nếu t = 2 2 2 2 2 3 2 2 3 4 2 1 0 1 2x x x x x x x⇔ − + = ⇔ − + = ⇔ − − = ⇔ = ± Nếu t = x – 1 1 2x⇒ ≥ + . Ta có: x2 – 2x + 3 = x2 – 2x + 1 ⇒phương trình vô nghiệm Ví dụ 3: Giải phương trình: ( )2 2 3 1 3 1x x x x+ + = + + (1) Gợi ý: Đặt 2 1; 1t x t= + ≥ Phương trình (1) trở thành: t2 – (x + 3)t + 3x = 0 ⇔ (t – x)(t – 3) = 0 3 t x t = ⇔  = Nếu t = x 2 1x x⇔ + = (vô nghiệm) Nếu t = 3 2 1 3 2 2x x⇔ + = ⇔ = ± . Vậy: 2 2x = ± d) Dạng 4: Đặt ẩn phụ đưa về phương trình tích: Ví dụ 1: Giải phương trình: 3 1 x− + 2+x =1 Gợi ý: ĐK: x ≥ -2 Đặt 2+x = t ≥ 0 2tx 2 −=⇒ . Khi đó: 3 1 x− = 3 2 3 t− Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 18
    13. 20. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc ⇔ 0)1u5)(1u( =−+ ⇔     = −= 5 1 u )loai(1u + Với u = 5 1 ta có: x = ( 5 1 )2 – 1 = 25 24− thỏa mãn điều kiện (1) Vậy phương trình đã cho có nghiệm là x = 0 và x = 25 24− . * Nhận xét : Khi sử dụng phương pháp đưa về phương trình tích để giải phương trình vô tỉ ta cần chú ý các bước sau. + Tìm tập xác định của phương trình. + Dùng các phép biến đổi đại số, đưa phương trình về dạng f(x) g(x) ….= 0 (gọi là phương trình tích). Từ đó ta suy ra f(x) = 0; g( x) = 0;….. là những phương trình quen thuộc. + Nghiệm của PT là hợp nghiệm của các phương trình f(x) = 0; g(x) = 0;….. thuộc tập xác định . + Biết vận dụng, phối hợp một cách linh hoạt với các phương pháp khác như nhóm các số hạng, tách các số hạng hoặc đặt ẩn phụ thay thế cho một biểu thức chứa ẩn đưa về phương trình dạng tích quen thuộc đã biết cách giải. Bài tập áp dụng: 1. 673 −− xx = 0 2. 22 −− xx – 2 22 +− xx = 1−x 3. x(x+5) = 2 2253 2 −−+ xx 4. 2( x2 + 2x + 3) = 5 233 23 +++ xxx 3.4. Phương pháp 4: Phương pháp đưa về hệ phương trình: Các bước tiến hành: – Tìm điều kiện tồn tại của phương trình – Biến đổi phương trình để xuất hiện nhân tử chung – Đặt ẩn phụ thích hợp để đưa việc giải phương trình về việc giải hệ phương trình quen thuộc. Ví dụ 1: Giải phương trình: 2 25 x− – 2 15 x− = 2 Gợi ý: ĐK: 0 ≤ x2 ≤ 15 Đặt: 2 25 x− = a (a ≥ 0) (* ); 2 15 x− = b ( b ≥ 0) ( ** ) Từ phương trình đã cho chuyển về hệ phương trình: Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 20
    14. 21. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc (1)⇒      ≠+ +=+− =− 0 )(2))(( 2 ba bababa ba ⇔    =+ =− 5 2 ba ba ⇔       = = 2 3 2 7 b a + Với a = 2 7 ⇒ 25 – x2 = 4 49 ⇔ x2 = 4 51 ⇒ x = 2 51 ± (thỏa mãn) Vậy phương trình đã cho có nghiệm x = 2 51 ± . Ví dụ 2: Giải phương trình: 35 3)3(5)5( −+− −−+−− xx xxxx = 2 (1) Gợi ý: ĐK: 3 ≤ x ≤ 5 Đặt     ≥=− ≥=− )0(3 )0(5 ttx uux Phương trình (1) trở thành hệ phương trình: (1) ⇔     =+− =+ 2 2 22 22 tutu tu ⇔ ut = 0 ⇔    = = 0t 0u + Với u = 0⇒ 5x0x5 =⇒=− (thỏa mãn) + Với t = 0 ⇒ 3x03x =⇒=− (thỏa mãn) Vậy phương trình đã cho có nghiệm x =3; x= 5. Ví dụ 3: Giải phương trình: 3 2 x− + 1−x = 1 Gợi ý: ĐK: x ≥ 1 Đặt     ≥=− =− )0(1 23 ttx ux Khi đó: u3 = 2 – x ; t2 = x- 1 nên u3 + t2 = 1 Phương trình đã cho được đưa về hệ:    =+ =+ )2(1tu )1(1tu 23 Từ phương trình (1) ⇒ u = 1 – t. Thay vào phương trình (2) ta có: (2) ⇔ (1 – t)3 + t2 = 1 ⇔ t( t2 – 4t + 3) = 0 ⇔    =+− = 03t4t 0t 2 ⇔         = = = 3t 1t 0t + Với t = 0 ⇒ 01x =− ⇒ x = 1 (thỏa mãn) + Với t = 1⇒ 11x =− ⇒ x = 2 (thỏa mãn) + Với t = 3⇒ 31x =− ⇒ x = 10 (thỏa mãn) Vậy: x= 1; x =2 ; x = 10 là nghiệm của phương trình đã cho. Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 21
    15. 22. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc Ví dụ 4: Giải phương trình: 3 2 )1( +x + 3 2 )1( −x + 3 2 1−x = 1 Đặt: 3 1+x = a ; 3 1−x = b nên ta có: a2 = 3 2 )1( +x ; b2 = 3 2 )1( −x ; ab = 3 2 1−x . Ta được phương trình: a2 + b 2 + ab = 1 (1) Ta có:     −= += 1 1 3 3 xb xa Ta được phương trình: a3 – b3 = 2 (2) Từ (1) và (2) ta có hệ phương trình:     =++− =++ ⇔     =− =++ 1)abba)(ba( 1abba 2ba 1abba 22 22 33 22 Từ hệ phương trình, ta suy ra: a – b = 2 ⇒ b = a – 2 Thay vào phương trình (1) ta được: 3.(a -1)2 = 0 ⇒ a =1 Với a = 1, ta có: 3 1+x = 1 ⇒ x = 0 (thỏa mãn) Vậy nghiệm của phương trình là: x = 0 Ví dụ 5: Giải phương trình: 4 4 x x− + = Gợi ý: ĐK: 0 4 0 0 12 4 4 0 x x x x  ≥  + ≥ ⇒ ≤ ≤  − + ≥ Đặt 4y x= + ta có hệ phương trình: 2 2 4 4 44 x y x y y xy x  = − = −  ⇔  = += +  ( ) ( ) ( )2 2 22 1 0 44 x y x yx y x y x yx y   + − + =− = − −  ⇔ ⇔  = −= −   Vì x + y≠ 0 nên ta có hệ: 2 2 2 1 13 1 0 24 1 3 0 4 1 13 (loai) 2 xx y x x x x x y x  − + =− + = ⇒ = − − ⇔ + − = ⇒ = − − − =  Vậy phương trình có nghiệm duy nhất là: 1 13 2 x − + = Ví dụ 6: Giải phương trình: ( ) ( ) 2 2 3 23 3 3 1 3 1 9 1 1x x x+ + − + − = (1) Gợi ý: Đặt 3 3 3 1; 3 1u x v x= + = − Phương trình (1) trở thành hệ: 2 2 3 3 1 2 2 2 u v uv u v u v u v  + + = ⇒ − = ⇒ = + − = Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 22
    16. 23. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc Do đó: ( ) ( ) ( ) 2 22 2 2 2 1 3 6 3 0 3 1 0 1 1v v v v v v v v u+ + + + = ⇔ + + = ⇔ + = ⇔ = − ⇒ = Ta có: 3 3 3 1 1 0 3 1 1 x x x  + = ⇒ = − = − Vậy phương trình có nghiệm là: x = 0. Chú ý: Đối với phương trình có dạng: (x) (x)n na f b f c− + + = Ta thường đặt (x); (x)n nu a f v b f= − = + Khi đó, ta được hệ phương trình: n n u v c u v a b + =  + = + Giải hệ này ta tìm được u và v. Từ đó ta tìm được giá trị của x. Ví dụ 7: Giải phương trình: 3 1 1 1 2 2 x x+ + − = (1) Gợi ý: ĐK: 1 2 x ≤ Đặt : 3 1 1 ; 0 2 2 u x v x= + = − ≥ Ta được hệ: ( ) ( ) ( ) 3 2 3 2 0 1 1 1 1 3 0 1 1 3 v u v v v v v v v u v v = + = ⇒ − = − ⇔ − − = ⇔ = + =  = Giải tiếp ta tìm được tập nghiệm của phương trình là: S = 1 1 17 ; ; 2 2 2 − −      Ví dụ 8: Giải phương trình: 2 2 2 2 1x x x− = − (1) Gợi ý: Điều kiện: 1 2 x ≥ Ta có (1) 2 ( 1) 1 2 2 1x x⇔ − − = − Đặt 1 2 1y x− = − thì ta đưa về hệ sau: 2 2 2 2( 1) 2 2( 1) x x y y y x  − = −  − = − Trừ hai vế của phương trình ta được: ( )( ) 0x y x y− + = Giải ra ta tìm được nghiệm của phương trình là: 2 2x = + Ví dụ 9: Giải phương trình: 2 2 6 1 4 5x x x− − = + (1) Gợi ý: ĐK 5 4 x ≥ − Ta có: ( ) 2 2 1 4 12 2 2 4 5 (2 3) 2 4 5 11x x x x x⇔ − − = + ⇔ − = + + Đặt 2 3 4 5y x− = + ta được hệ : 2 2 (2 3) 4 5 ( )( 1) 0 (2 3) 4 5 x y x y x y y x  − = + ⇒ − + − = − = + Với 2 3 4 5 2 3x y x x x= ⇒ − = + ⇒ = + Với 1 0 1 2 1 4 5x y y x x x+ − = ⇔ = − ⇔ − − = + (vô nghiệm) Kết luận: Nghiệm của phương trình là 2 3x = + Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 23
    17. 25. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc 5. Phương pháp 5: Phương pháp Áp dụng bất đẳng thức: Các bước: * Biến đổi phương trình về dạng f(x) = g(x) và f(x) ≥ a; g(x) ≤ a (a là hằng số). Nghiệm của phương trình là các giá trị của x thỏa mãn đồng thời f(x) = a và g(x) = a. * Biến đổi phương trình về dạng h(x) = m (m là hằng số) mà ta luôn có h(x) ≥ m; hoặc h(x) ≤ m thì nghiệm của phương trình là các giá trị của x làm cho dấu đẳng thức xảy ra. * Áp dụng các bất đẳng thức: Côsi; Bunhia côpxki, …. a) Dạng 1: Chứng tỏ tập giá trị của hai vế là rời nhau, khi đó phương trình vô nghiệm. Ví dụ 1: Giải phương trình: 1−x – 15 −x = 23 −x (1) Gợi ý: ĐK:      ≥− ≥− ≥− 023 015 01 x x x ⇔          ≥ ≥ ≥ 3 2 5 1 1 x x x 1x ≥⇔ Với x ≥ 1 thì x < 5x do đó 1−x < 15 −x Suy ra: Vế trái của (1) là số âm, còn vế phải là số không âm. Vậy phương trình vô nghiệm . Ví dụ 2: Giải phương trình: 1162 +− xx + 1362 +− xx + 4 2 54 +− xx = 3 + 2 (1) Gợi ý: Ta có: (1) ⇔ 2)3( 2 +−x + 4)3( 2 +−x + 4 2 1)2( +−x = 3 + 2 Mà 2)3( 2 +−x + 4)3( 2 +−x + 4 2 1)2( +−x ≥ 2 + 4 + 1 = 3 + 2 ⇒ VP = VT = 3 + 2 khi    =− =− 02x 03x    = = ⇔ 2x 3x (vô nghiệm) Vậy phương trình đã cho vô nghiệm. Bài tập áp dụng: 1. 1−x – 1+x = 2 2. 62 +x = x – 2 12 −x 3. x−6 + 2+x = x2 – 6x +13 Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 25
    18. 26. Trần Mạnh Hùng – Trường THCS Lập Thạch – Vĩnh Phúc b) Dạng 2: Sử dụng tính đối nghịch ở hai vế: Ví dụ 1: Giải phương trình: 2 2 2 3 6 7 5 10 14 4 2x x x x x x+ + + + + = − − (1) Gợi ý: Ta có: (1) ( ) ( ) ( ) 2 2 2 3 1 4 5 1 9 5 1x x x⇔ + + + + + = − + Mà: VT = ( ) ( ) 2 2 3 1 4 5 1 9 4 9 5x x+ + + + + ≥ + = VP = ( ) 2 5 1 5x− + ≤ ( ) 2 1 0 1 0 1VT VP x x x⇒ = ⇔ + = ⇔ + = ⇔ = − Vậy phương trình có nghiệm là: x = -1. Ví dụ 2: Giải phương trình: 4−x + x−6 = x2 -10x + 27 (1) Gợi ý: ĐK: 4 ≤ x ≤ 6 Theo BĐT Côsi, ta có: 4−x 2 4×1 −+ ≤ x−6 2 x61 −+ ≤ 2 2 x61 2 4×1 x64xVT = −+ + −+ ≤−+−=⇒ Mà: VP= x2 – 10x + 27 = ( x-5)2 + 2 ≥ 2 (∀ x) VPVT =⇒ khi: x- 4 = 6 – x 5x10x2 =⇒=⇔ (thỏa mãn) Vậy x = 5 là nghiệm của phương trình (1) Ví dụ 3: Giải phương trình: 2 2 2 6 15 6 18 6 11 x x x x x x − + = − + − + (1) Gợi ý: Ta có: (1) ( ) ( ) 2 2 4 1 3 9 3 2 x x ⇔ + = − + − + Mà: VT = ( ) 2 4 4 1 1 3 23 2x + ≤ + = − + VP = ( ) 2 3 9 3x − + ≥ ( ) 2 3 0 3 0 3VT VP x x x⇒ = ⇔ − = ⇔ − = ⇔ = Vậy phương trình có nghiệm là x = 3. Ví dụ 4: Giải phương trình: 2 2 24 6 11 6 13 4 5 3 2x x x x x x− + + − + + − + = + (1) Gợi ý: Ta có: (1) ( ) ( ) ( ) 2 2 2 4 3 2 3 4 2 1 3 2x x x⇔ − + + − + + − + = + (*) Mà: VT = ( ) ( ) ( ) 2 2 2 44 3 2 3 4 2 1 2 4 1 3 2x x x− + + − + + − + ≥ + + = + VP = 3 2+ Nên (*) xảy ra ( ) ( ) 2 2 3 0 3 22 0 x x xx  − = = ⇔ ⇔  =− = (vô lí) Vậy phương trình vô nghiệm. Chuyên đề: Phương pháp giải một số dạng phương trình vô tỉ cơ bản ở cấp THCS 26

    --- Bài cũ hơn ---

  • Phương Trình Vi Phân Tuyến Tính Cấp 1, Bernoulli, Ricatti
  • Giải Toán 11 Bài 3. Một Số Phương Trình Lượng Giác Thường Gặp
  • Chỉ Cần 20 Bước Là Giải Được Bất Kỳ Khối Rubik Nào, Nhưng Mất 36 Năm Nghiên Cứu Ta Mới Tìm Ra Con Số 20 ‘thần Thánh’
  • Bí Kíp Giải Rubik Cực Chuẩn Chỉ Trong ‘nháy Mắt’
  • Giải Bài Toán Yêu Nhau Cau Sáu Bổ Ba
  • Web hay
  • Guest-posts
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100