Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay

--- Bài mới hơn ---

  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác
  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải Toán 10 Bài 2. Hàm Số Y = Ax + B
  • Cđ Pt Đt Y = Ax + B Chuyen De Viet Phuong Trinh Duong Thang Yax B Doc
  • Trên Tập Số Phức, Phương Trình: (Z^4+4=0) Có Bao Nhiêu Nghiệm?
  • Cách giải phương trình vô tỉ bằng phương pháp đánh giá cực hay

    Phương pháp giải

    Bước 1: Tìm đkxđ

    Bước 2: Đánh giá một vế lớn hơn hoặc bằng vế còn lại hoặc đánh giá cả hai vế.

    Phương trình có nghiệm ⇔ A = B = C = … = 0.

    + Cách 2 : Sử dụng các BĐT để đánh giá.

    BĐT Cô-si áp dụng cho hai số dương : a 2 + b 2 ≥ 2ab

    BĐT Cô-si áp dụng cho ba số dương : a 3 + b 3 + c 3 ≥ 3abc

    Bước 3 : Xét dấu = xảy ra và đối chiếu tìm nghiệm của phương trình.

    Ví dụ minh họa

    Ví dụ 1: Giải phương trình:

    Hướng dẫn giải:

    Dấu “=” khi (x – 2) 2 = 0 ⇔ x = 2.

    Vậy phương trình có nghiệm x = 2.

    Ví dụ 2: Giải các phương trình sau:

    Hướng dẫn giải:

    Ta có:

    Suy ra

    Suy ra pt (1) ⇔

    Vậy phương trình có nghiệm x = 1; y = 2; z = 3.

    Ví dụ 3: Giải phương trình

    Hướng dẫn giải:

    Đkxđ : x ≠ 0.

    Nhân cả hai vế với 3x ta được : (1) .

    Ta có :

    Áp dụng BĐT Cô si cho ba số ta có :

    ⇒ VT (1) ≤ VP (1).

    Vậy phương trình có 2 nghiệm x = ±√3 .

    Bài tập trắc nghiệm tự luyện

    Bài 2: Phương trình có tổng các nghiệm bằng :

    A. 0 B. 1

    C. 2 D. 3

    A. Phương trình có một nghiệm âm

    B. Phương trình có một nghiệm dương

    C. Phương trình có hai nghiệm trái dấu

    D. Phương trình vô nghiệm.

    Bài 5: Phương trình có số nghiệm là :

    A. 0 B. 1

    C. 2 D. 3

    Bài 6: Giải phương trình

    Hướng dẫn giải:

    Đkxđ : x ≥ -1.

    Nhận thấy : VT = với mọi x.

    PT có nghiệm ⇔ ⇔ x = 3 (t.m)

    Vậy phương trình có nghiệm x = 3.

    Bài 7: Giải phương trình:

    Hướng dẫn giải:

    Ta có :

    VT

    Phương trình có nghiệm ⇔

    Vậy phương trình vô nghiệm

    Bài 8: Giải phương trình :

    Hướng dẫn giải:

    Đkxđ : 5 ≤ x ≤ 7 .

    ⇒ VT ≤ VP với mọi x.

    Phương trình có nghiệm ⇔ ⇔ x = 6.

    Vậy phương trình có nghiệm x = 6.

    Bài 9: Giải phương trình :

    Hướng dẫn giải:

    Đkxđ : 0 ≤ x ≤ 1 .

    + Nếu x = 1, VT (*) = 3 ; VP (*) = 3.

    ⇒ x = 1 là nghiệm của phương trình.

    + Với 0 ≤ x ≤ 1 thì

    ⇒ Phương trình vô nghiệm.

    Vậy phương trình có nghiệm duy nhất x = 1.

    Bài 10: Giải phương trình :

    Hướng dẫn giải:

    Gợi ý: PT có nghiệm x = 1/2 . Do đó ta thêm bớt các số để đánh giá BĐT sao cho dấu = đều xảy ra tại x = 1/2 .

    Giải :

    Khi đó áp dụng BĐT Cô-si cho VT ta có :

    Áp dụng BĐT Cô-si cho vế trái ta được :

    ⇒ VT ≥ VP

    Phương trình có nghiệm ⇔ x = 2.

    Vậy phương trình có nghiệm duy nhất x = 2.

    Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

    Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ

    --- Bài mới hơn ---

  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Họ và tên : Đặng Việt Anh

    Lớp : 10A3

    Trường : THPT Ân Thi

    Nhóm :. . . . . .

    Gồm hs:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ

    I, Tư tưởng đặt ẩn phụ

    Xác định phương trình cơ bản:

    Ví dụ: phương trình t2 – 3t + 2

    + chọn t = ( phương trình có dạng

    + chọn t = ( phương trình có dạng

    II, Các phương pháp đặt ẩn phụ

    1, Đặt 1 ẩn phụ

    Một số kiểu đặt thường gặp

    + ( Ta nên đặt t = (

    + ( Ta nên đặt

    + ( Ta nên đặt

    2, Chia làm xuất hiện ẩn phụ

    Chia 2 vế phương trình cho hoặc x, x2 đại lượng thích hợp.

    Trước khi chia cho 1 lượng nào đó ta phải kiểm tra lượng đó bằng 0 có là nghiệm phương trình không

    III, Bài tập hướng dẫn

    Bài tập 1: Giải phương trình

    Bài giải:

    B1: Đặt ()

    B2: Biến đổi căn thức bằng cách bình phương

    (1)

    Ta nhận thấy

    B3: Thay vào phương trình

    Giải pt ta được nghiệm không thỏa mãn điều kiện )

    B4: Thay t =1 vào (1) ta sẽ được nghiệm x.

    t=1 (

    ( phương trình có 2 nghiệm x=0 (TM) và x=-2 (TM).

    KL: x=0 và x=-2 là nghiệm của pt

    Bài tập 2: Giải phương trình .

    Bài giải:

    Tương tự như các bước trên:

    Đk:

    Đặt

    (2)

    Thay vào pt:

    Giải pt có 2 nghiệm ( loại không thỏa mãn điều kiện)

    Thay t=5 vào (2)

    Giải pt suy ra x=143 (KTM) x=3(TM)

    KL: x=3 là nghiệm của pt

    Thay vào phương trình:

    (loại ktm đk)

    Thay t=2 vào (3)

    Giải pt suy ra cả 2 đều TM

    KL:

    Ví dụ 4: giải pt

    Bài giải:

    Bình phương khử căn:

    Chia cả 2 vế cho ta đc:

    Đặt

    loại t=0 vì k tm đk

    Thay t=5 vào pt

    Thay x=1 và x=4 vào pt ta thấy x=4 là nghiệm thỏa mãn còn x=1 không thỏa mãn

    --- Bài cũ hơn ---

  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Pp Giải Pt&bpt Vô Tỷ
  • 4 Cách Giải Phương Trình Vô Tỉ Cực Hay
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp

    --- Bài mới hơn ---

  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác
  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải phương trình vô tỉ bằng phương pháp lượng liên hợp

    Có rất nhiều phương cách giải PT Vô tỉ nhưng bản thân tôi thích nhất là PP lượng liên hợp vì tính tự nhiên của nó. Trong bài viết này tôi giới thiệu với các bạn một số suy nghĩ về phương pháp này.

    Cho hàm số , xác định trên .

    Ta biết là nghiệm phương trình .

    Mà theo định lí Bơzu nếu là nghiệm của đa thức thì

    . Từ đây ta có nhận xét:

    Nếu là một nghiệm của phương trình thì ta có thể đưa phương trình về dạng và khi đó việc giải phương trình quy về giải phương trình . Ta xét ví dụ sau:

    Ví dụ 1: Giải phương trình: (HVKTQS 2000).

    Giải: Điều kiện : .

    Ta thấy là một nghiệm của phương trình ( ta nghĩ đến vì khi đó và là những số chính phương) do đó ta có thể đưa phương trình về dạng: nên ta biến đổi phương trình như sau: , vấn đề còn lại của chúng ta là phải phân tích ra thừa số (Chú ý khi thì ), vì định lí Bơzu chỉ áp dụng cho đa thức nên ta phải biến đổi biểu thức này về dạng có mặt đa thức, tức là ta đưa về dạng

    điều này giúp ta liên tưởng đến đẳng thức : nên ta biến đổi :

    .

    Suy ra phương trình đến đây ta chỉ cần giải phương trình:

    .

    Vậy phương trình đã cho có hai nghiệm và .

    Nhận xét: 1) Qua ví dụ trên ta thấy để bỏ căn thức ta sử dụng hằng đẳng thức:

    hai biểu thức và ta gọi là hai biểu thức liên hợp của nhau. Nên phương pháp trên ta gọi là phương pháp nhân lượng liên hợp.

    2) Với phương pháp này điều quan trọng là ta phải biết được một nghiệm của phương trình, từ đó ta mới định hướng được cách biến đổi để là xuất hiện nhân tử chung. Để nhẩm nghiệm ta có thể sử dụng máy tính bỏ túi 570MS hoặc 570ES .

    Ví dụ 2: Giải phương trình : (THTT).

    Giải: Điều kiện : .

    Nhận thấy phương trình trên vẫn có nghiệm nên ta nghĩ đến cách giải phương trình trên bằng phương pháp nhân lượng liên hợp.

    Ta có:

    .

    Mặt khác vô nghiệm.

    Vậy phương trình đã cho có nghiệm duy nhất: .

    * Ta có dạng tổng quát của phương trình trên là:

    (Điều kiện : ).

    * Bằng máy tính ta có thể thấy được phương trình (*) vô nghiệm do đó ta nghĩ đến chứng minh phương trình (*) vô nghiệm. Thay vào phương trình (*) thì do đó ta tìm cách chứng minh VT(*) < VP(*).

    Ví dụ 3: Giải phương trình : (THTT).

    Giải: Điều kiện: .

    Ta thấy phương trình có một nghiệm nên ta phân tích ra thừa số .

    Ta có:

    Vậy phương trình có nghiệm duy nhất .

    Ví dụ 4: Giải phương trình: .

    Giải: Điều kiện: .

    Nhận thấy phương trình có một nghiệm .

    Phương trình

    Kết hợp với phương trình ban đầu ta có :

    (*) thử lại ta thấy hai nghiệm này đều thỏa mãn phương trình.

    Vậy phương trình đã cho có ba nghiệm: .

    Nhận xét: Để giải phương trình (*) ta phải kết hợp với phương trình ban đầu. Ta chú ý rằng phép biến đổi này là phép biến đổi hệ quả do đó sau khi giải xong ta phải thử lại các nghiệm để loại đi những nghiệm ngoại lai.

    Trong các ví dụ trên ta thấy mỗi phương trình đều có nghiệm hữu tỉ do đo việc dự đoán nghiệm tương đối dễ. Tuy nhiên trong nhiều trường hợp việc đoán nghiệm không được dễ dàng, đặc biệt là khi tất cả các nghiệm của phương trình đều là nghiệm vô tỉ! Trong trường hợp này chúng ta phải xử lí thế nào? Ta xét các ví dụ sau:

    Ví dụ 5: Giải phương trình :

    .

    Giải: Do nên .

    Bằng máy tính ta thấy được phương trình không có nghiệm hữu tỉ, mà chỉ có hai nghiệm vô tỉ. Ta thấy nếu (*) thì hai vế của phương trình bằng nhau nên ta phân tích ra thừa số .

    Ta có:

    (do nên khi đặt làm thừa số thì biểu thức trong dấu (.) luôn dương ).

    là nghiệm của phương trình đã cho.

    Chú ý : Mẫu chốt của bài toán là ta có nhận xét (*), từ đó ta mới định hướng

    tìm cách phân tích ra thừa số . Tuy nhiên trong nhiều bài toán thì việc tìm được nhân tử chung không còn đơn giản vậy nữa.

    Ví dụ 8: Giải phương trình: .

    Giải:

    Với phương trình ta không gặp được sự may mắn như phương trình trên, bằng cách sử dụng MTBT ta thấy phương trình có hai nghiệm vô tỉ, nếu ta linh hoạt một chút ta sẽ nghĩ đến thừa số chung là một tam thức bậc hai có hai nghiệm . Vấn đề tam thức ở đây là tam thức nào? Các bạn thử nghĩ xem nếu biết hai nghiệm của tam thức thì ta có thể xác định được tam thức đó hay không? Chắc chúng ta sẽ trả lời là có nhờ vào định lí đảo của định lí Viet. Áp dụng định lí Viet ta tính được ( sử dụng MTBT) . Vậy thừa số chúng mà ta cần phân tích là tam thức nên ta biến đổi như sau:

    Phương trình

    là nghiệm của phương trình.

    Chú ý : 1) Để tạo ra thừa số ngoài cách biến đổi như trên ta còn có thể làm cách khác như sau:

    Cách 2: Vì không là nghiệm phương trình nên.

    Phương trình

    Vì (*) vô nghiệm, nên phương trình có hai nghiệm: .

    2) Nếu như chúng ta không có máy tính để xác định được thừa số chung là thì ta là thế nào ?.

    Trước hết ta thêm một lượng vào hai vế:

    .

    Ta chọn m,n sao cho: , từ đây ta có: .

    3) Ta thấy cả hai cách biến đổi đều làm xuất hiện thừa số chung . Tuy nhiên cách thứ 2 sẽ thuận lợi hơn cách thứ nhất vì ở cách thứ 2 sau khi đặt thừa số ta chỉ còn phải giải quyết phương trình (*), còn với cách thứ nhất thì ta phải giải quyết biểu thức trong dấu (.) phức tạp hơn nhiều. Hơn nữa với cách biến đổi thứ hai chúng ta dễ sáng tạo ra các bài toán hơn cách thứ nhất.

    Ví dụ 9: Giải phương trình : .

    Giải: Điều kiện : .

    Ta thấy không là nghiệm của phương trình nên ta có:

    Phương trình . Bằng cách làm như đã nêu ở phần nhận xét ta tìm được , do đó ta thêm vào hai vế của phương trình lượng :

    Phương trình

    (1).

    * Nếu

    .

    Khi đó (1) đúng là một nghiệm của phương trình.

    * Nếu

    Ta có: (a) có hai nghiệm và

    (b)

    .

    Vậy phương trình có bốn nghiệm: .

    Khi muốn thêm bớt bằng cách nhân, chia một biểu thức thì ta phải kiểm tra xem biểu thức đó có luôn khác không hay không ?

    Ví dụ 10: Giải phương trình:

    .

    Giải: Đk : .

    Đặt : ( I)

    Ta thấy phương trình có nghiệm .Ta biến đổi như sau:

    (Vì hai pt: và vô nghiệm ). .

    Kết hợp ( I) và ( II) ta có hệ :

    .

    Thay vào phương trình ban đầu ta thấy chỉ nghiệm thỏa mãn.

    Vậy phương trình đã cho có hai nghiệm và .

    Ví dụ 11 : Giải bất phương trình : .

    Giải: Điều kiện :

    Bất phương trình .

    .

    Kết hợp điều kiện nghiệm bất phương trình : .

    VÀ dĩ nhiên là thêm mấy bài tập để các bạn luyện tập

    Giải các phương trình sau:

    1)

    2)

    3)

    4)

    5) .

    6)

    7) )

    8)

    9)

    10)

    11)

    12)

    13)

    Nguyễn Tất Thu @ 21:00 20/02/2012

    Số lượt xem: 12843

    --- Bài cũ hơn ---

  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ

    --- Bài mới hơn ---

  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác
  • I, Tư tưởng đặt ẩn phụ

    – Xác định phương trình cơ bản:

    Ví dụ: phương trình t2 – 3t + 2

    Họ và tên : Đặng Việt Anh Lớp : 10A3 Trường : THPT Ân Thi Nhóm :. . . . . . Gồm hs:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ I, Tư tưởng đặt ẩn phụ Xác định phương trình cơ bản: Ví dụ: phương trình t2 - 3t + 2 + chọn t = à phương trình có dạng + chọn t = à phương trình có dạng II, Các phương pháp đặt ẩn phụ 1, Đặt 1 ẩn phụ Một số kiểu đặt thường gặp + à Ta nên đặt t = ( + à Ta nên đặt + à Ta nên đặt 2, Chia làm xuất hiện ẩn phụ Chia 2 vế phương trình cho hoặc x, x2 đại lượng thích hợp. Trước khi chia cho 1 lượng nào đó ta phải kiểm tra lượng đó bằng 0 có là nghiệm phương trình không III, Bài tập hướng dẫn Bài tập 1: Giải phương trình Bài giải: B1: Đặt () B2: Biến đổi căn thức bằng cách bình phương (1) Ta nhận thấy B3: Thay vào phương trình Giải pt ta được nghiệm không thỏa mãn điều kiện ) B4: Thay t =1 vào (1) ta sẽ được nghiệm x. t=1 à à phương trình có 2 nghiệm x=0 (TM) và x=-2 (TM). KL: x=0 và x=-2 là nghiệm của pt Bài tập 2: Giải phương trình . Bài giải: Tương tự như các bước trên: Đk: Đặt (2) Thay vào pt: Giải pt có 2 nghiệm ( loại không thỏa mãn điều kiện) Thay t=5 vào (2) Giải pt suy ra x=143 (KTM) x=3(TM) KL: x=3 là nghiệm của pt Bài tập 3: Giải phương trình . Bài giải: ĐK: Rút gọn pt: Đặt +1 (3) Thay vào phương trình: (loại ktm đk) Thay t=2 vào (3) Giải pt suy ra cả 2 đều TM KL: Ví dụ 4: giải pt Bài giải: Bình phương khử căn: Chia cả 2 vế cho ta đc: Đặt loại t=0 vì k tm đk Thay t=5 vào pt Thay x=1 và x=4 vào pt ta thấy x=4 là nghiệm thỏa mãn còn x=1 không thỏa mãn

    Tài liệu đính kèm:

      giai_pt_vo_ti_bang_phuong_phap_dat_an_phu.doc

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay

    --- Bài mới hơn ---

  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay

    Phương pháp giải

    Bước 1: Tìm đkxđ.

    Bước 2: Đặt một (hoặc nhiều) biểu thức thích hợp làm ẩn mới, (thường là các biểu thức chứa căn thức) tìm điều kiện của ẩn mới.

    Bước 3: Biến đổi phương trình theo ẩn mới (Có thể biến đổi hoàn toàn thành ẩn mới hoặc để cả 2 ẩn cũ và mới) rồi giải phương trình theo ẩn mới.

    Bước 4: Thay trả lại ẩn cũ và tìm nghiệm, đối chiếu đkxđ và kết luận.

    Ví dụ minh họa

    Ví dụ 1: Giải phương trình

    Hướng dẫn giải:

    Đkxđ: ∀ x ∈ R.

    Phương trình trở thành:

    t 2 + t – 42 = 0 ⇔ (t – 6)(t + 7) = 0

    Với t = 6 ⇒

    ⇔ (x-3) (2x+9) = 0 .

    ⇔ x = 3 hoặc x = -9/2

    Vậy phương trình có hai nghiệm x = 3 và x = -9/2.

    Ví dụ 2: Giải phương trình

    Hướng dẫn giải:

    Đkxđ : 4x 2 + 5x + 1 ≥ 0

    Phương trình trở thành : a – b = a 2 – b 2

    ⇔ (a-b)(a+b-1) = 0 ⇔ a – b = 0 hoặc a + b – 1 = 0.

    TH1 : a – b = 0 ⇔ 9x – 3 = 0 ⇔ x = 1/3 (t.m đkxđ).

    ⇒ Phương trình (*) vô nghiệm.

    Vậy phương trình có nghiệm duy nhất x = 1/3 .

    Ví dụ 3: Giải phương trình:

    Hướng dẫn giải:

    Đkxđ: ∀ x ∈ R.

    Phương trình trở thành: t 2 – (x+3)t + 3x = 0

    ⇔ (t-3)(t-x) = 0 ⇔ t = 3 hoặc t = x .

    + t = 3 ⇒ ⇔ x 2 = 8 ⇔ x = ±2√2 .

    + t = x ⇒ ⇒ x 2 + 1 = x 2. Phương trình vô nghiệm.

    Vậy phương trình có hai nghiệm .

    Bài tập trắc nghiệm tự luyện

    Bài 1: Cho phương trình: Nếu đặt thì t phải lưu ý điều kiện nào?

    A. t ∈ R B. t ≤ 1

    C. t ≥ 1 D. t ≥ -1 .

    Bài 2: Số nghiệm của phương trình là:

    A. 0 B. 2 C. 4 D. 6

    Bài 3: Tập nghiệm của phương trình có bao nhiêu phần tử?

    A. 0 B. 2 C. 4 D. 6

    A. Phương trình có nghiệm âm duy nhất.

    B. Phương trình có 2 nghiệm trái dấu.

    C. Phương trình có 2 nghiệm âm.

    D. Phương trình có hai nghiệm dương.

    Bài 5: Phương trình có tổng các nghiệm bằng:

    A. 3/2 B. 1 C. 2/3 D. -3/2 .

    Bài 6: Giải phương trình

    Hướng dẫn giải:

    Ta có:

    Phương trình trở thành: t + t 3 – 30 = 0 ⇔ (t-3)(t 2 + 3t + 10) = 0 ⇔ t = 3

    Thay trả lại biến x ta được:

    ⇔ x = 2.

    Vậy phương trình có nghiệm x = 2.

    Bài 7: Giải phương trình :

    Hướng dẫn giải:

    a) Đkxđ:

    Phương trình trở thành:

    Vậy phương trình có nghiệm x = 1.

    b) Đkxđ: x – 1/x ≥ 0 ; x ≠ 0 .

    Chia cả hai vế của phương trình cho x ta được:

    Pt trở thành: t 2 + 2t – 3 = 0 ⇔ (t + 3)(t – 1) = 0 ⇔ t = -3(L) hoặc t = 1 (t/m) .

    + t = 1

    Vậy phương trình có hai nghiệm

    c) Đkxđ: x ≥ -1 .

    Phương trình trở thành : 2a 2 – 5ab + 2b 2 = 0

    ⇔ (2a-b) (a-2b) = 0

    ⇔ a = b/2 hoặc a = 2b

    + a = b/2 ⇔

    ⇔ x 2 – x + 1 = 4(x+1) ⇔ x 2 – 5x – 3 = 0 ⇔

    + a = 2b ⇔

    Phương trình vô nghiệm.

    Vậy phương trình có hai nghiệm .

    Bài 8: Giải phương trình:

    Hướng dẫn giải:

    a) Đkxđ: x 2 ≤ 15.

    Đặt

    Thay trả lại biến x ta được:

    Vậy phương trình có hai nghiệm

    b)

    Đkxđ: x ≥ 1.

    Đặt

    Mà theo đề bài ta có u + v = 1 ⇒ v = 1 – u

    Thay v = 1 – u vào (*) ta được: u 3 + (1 – u) 2 = 1

    ⇔ u(u – 1)(u + 2) = 0

    ⇔ u = 0 hoặc u = 1 hoặc u = -2.

    + u = 0 ⇒ x = 2 (t.m)

    + u = 1 ⇒ x = 1 (t.m)

    + u = -2 ⇒ x = 10 (t.m)

    Vậy phương trình có ba nghiệm x = 1; x = 2 và x = 10.

    c)

    Đkxđ: ∀x ∈ R.

    Đặt

    Phương trình trở thành: a 2 + b 2 + ab = 1 (**)

    Thay vào (*) ta được: (a – b).1 = 2 ⇒ a – b = 2 ⇒ a = 2 + b

    Thay a = 2 + b vào (**) ta được:

    ⇔ 3(b + 1)2 = 0

    ⇔ b = -1

    ⇒ ⇔ x = 0.

    Thử lại x = 0 là nghiệm của phương trình.

    Vậy phương trình có nghiệm x = 0.

    Bài 9: Giải phương trình:

    Hướng dẫn giải:

    Đkxđ: x ≥ 1 .

    Đặt

    Khi đó

    Phương trình trở thành:

    a + b = 1 + ab ⇔ ab + 1 – a – b = 0 ⇔ (a – 1)(b – 1) = 0 ⇔ a = 1 hoặc b = 1

    + a = 1 ⇔ √(x-1) = 1 ⇔ x = 2.

    + b = 1 ⇔

    ⇔ x = 0 (không t.m đkxđ).

    Vậy phương trình có nghiệm x = 2.

    Bài 10: Giải phương trình:

    Hướng dẫn giải:

    Đặt

    Phương trình trở thành: a + b = 4 (**)

    ⇔ (ab – 3)(ab – 29) = 0

    ⇔ ab = 3 hoặc ab = 29.

    + ab = 3.

    Từ (**) ⇒ a = 4 – b.

    Thay vào ab = 3 ⇒ (4 – b)b = 3 ⇔ b2 – 4b + 3 = 0 ⇔ (b – 1)(b – 3) = 0 ⇔

    Nếu a = 3; b = 1 ⇒ ⇒ x =

    Nếu a = 1; b = 3 ⇒ ⇒ x =

    Thử lại cả hai đều là nghiệm của phương trình.

    + Nếu ab = 29

    Từ (**)⇒ a = 4 – b.

    Thay vào ab = 29 ⇒ (4 – b)b= 29 ⇔ b 2 – 4b + 29 = 0.

    Phương trình vô nghiệm.

    Vậy phương trình có hai nghiệm x = 63/5 và x = -17/5

    Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

    Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

    --- Bài cũ hơn ---

  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”

    --- Bài mới hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Đề tài SKKN “Giải PT vô tỉ bằng cách đặt ẩn phụ”

    NỘI DUNG SÁNG KIẾN KINH NGHIỆM

    PHƯƠNG TRÌNH VÔ TỈ VỚI CÁCH GIẢI BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ

    A. Lý do chọn đề tài

    Toán học là môn học cơ bản trong nhà trường phổ thông, đối với học sinh môn toán nói chung và môn đại số nói riêng là một môn học khó. Bởi vậy không ít học sinh dù đã cố gắng xong kết quả môn toán nói chung và phân môn đại số nói riêng còn thấp so với yêu cầu. Để nâng cao chất lượng giáo dục toàn diện các nhà trường nói chung, các giáo viên trực tiếp giảng dạy nói riêng cần phải có giải pháp tích cực để nâng cao chất lượng môn đại số của học sinh THPT

    Nhằm mục đích nâng cao chất lượng học sinh khi học môn đại số nói chung và phương trình vô tỉ nói riêng, nên tôi chọn sáng kiến kinh nghiệm ”Phương trình vô tỉ với cách giải bằng phương pháp đặt ẩn phụ”

    B. Mục đích nghiên cứu đề tài

    Xây dựng những dạng bài tập cơ bản và phương pháp đặt ẩn phụ để giải phương trình vô tỉ. Giúp học sinh nâng cao trách nhiệm trong học tập, khắc phục tính chủ quan tự mãn, đặc biệt là phát triển năng lực tự đánh giá. Giúp người thầy tự điều chỉnh hoạt động dạy và học cho phù hợp.

    C. Đối tượng và phạm vi nghiên cứu

    Đối tượng: Học sinh lớp 10, 11 trường THPT Tuần Giáo.

    Phạm vi nghiên cứu: Đề tài tập trung nghiên cứu các dạng bài tập cơ bản và phương pháp giải phương trình vô tỉ bằng cách đặt ẩn phụ.

    D. Nhiệm vụ nghiên cứu

    + Giúp học sinh khối 10, 11 nắm chắc kiến thức cơ bản về phương trình vô tỉ với cách giải bằng phương pháp đặt ẩn phụ.

    + Học sinh hứng thú học và đạt kết quả cao.

    E. Phương pháp nghiên cứu

    + Nghiên cứu phương trình vô tỉ, đặc biệt với cách giải đặt ẩn phụ

    + Lấy ý kiến

    + Thử nghiệm sư phạm

    F. Nội dung nghiên cứu: Giải PT vô tỉ bằng phương pháp đặt ẩn phụ

    Khi giải pt dạng , chúng ta đều biết phải bình phương hai vế để khử căn bậc hai. Vậy với pt , và một số pt dạng khác có giải được bằng phương pháp đó không? Đây là câu hỏi mà nhiều học sinh chưa trả lời được. Qua nhiều năm dạy học sinh THPT tôi rút ra được kinh nghiệm giải pt vô tỉ bằng phương pháp đặt ẩn phụ.

    I. Dạng 1 : Sử dụng ẩn phụ để chuyển PT ban đầu thành 1 pt với ẩn phụ.

    1)Các phép đặt ẩn phụ thường gặp :

    PT chứa và f(x)

    Đặt t = ( t 0 ) f(x) = t2

    PT chứa , và . = k ( k= const)

    Đặt t= ( t 0 ) =

    PT chứa ± ; và f(x) + g(x) = k ( k= const)

    Đặt t = ± = ±

    PT chứa Đặt x = sint với thoặc x = cost với t

    PT chứa Đặt x = tant với thoặc x = cott với t

    PT dạng đặt ta thu được pt bậc hai

    PT dạng đặt ta được pt bậc hai

    PT dạng đặt ta thu được pt bậc hai

    PT dạng đặt ta được pt bậc hai

    2) Chú ý : Với PT vô tỉ sử dụng phương pháp đặt ẩn phụ, nhất thiết phải tìm điều kiện đúng cho ẩn phụ.

    3) Các ví dụ :

    VD1 : GPT : + = 3 (1)

    Đặt t = x2 – 3x + 3 Ta có : t = Đk t

    Khi đó (1) có dạng + = 3

    t + t + 3 + 2 = 9

    = 3 – t

    t = 1

    x2 – 3x + 3 = 1

    KL : PT có 2 nghiệm x= 1 ; x = 2.

    VD 2 :GPT : 2×2 + = 8x + 13 (2)

    ĐK : x2 – 4x -5 0 x -1 hoặc x 5

    PT ( 2 ) = -2×2 + 8x + 13 (2′)

    Đặt y = ĐK y 0 Ta có y2 = x2 – 4x – 5

    PT ( 2′) y = – 2y2 + 3

    2y2 + y – 3 = 0 loại

    Với y = 1 x2 – 4x – 5 = 1 x2 – 4x – 6 = 0 tm ĐK

    --- Bài cũ hơn ---

  • Giải Pt Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Pp Giải Pt&bpt Vô Tỷ
  • Giải Hệ Pt Bằng Phương Pháp Thế

    --- Bài mới hơn ---

  • Chủ Đề 11: Các Dạng Hệ Phương Trình Đặc Biệt
  • Phương Pháp Giải Một Số Dạng Phương Trình Môn Toán Ở Cấp Thcs
  • Giáo Án Đại Số Lớp 8 Tiết 42 Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Cách Giải Phương Trình Bậc Bốn
  • Bảng Công Thức Lượng Giác Đầy Đủ,chi Tiết,dễ Hiểu
  • Ngày 15 / 12/ 2009

    Tiết 33: §3.GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP

    A . Mục tiêu:

    – Giúp HS hiểu cách biến đổi hệ phương trình bằng qui tắc thế.

    – HS nắm vững cách giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế

    – HS không bị túng khi gặp các trường hợp đặc biệt ( hệ vô nghiệm hoặc hệ vô số nghiệm)

    b. Chuẩn bị:

    -GV: Bảng phụ có ghi sẵn qui tắc thế, chú ý và cách giải mẫu một số hệ phương trình.

    -HS: -Bảng phụ nhóm,bút dạ , giấy kẻ ô vuông.

    C. tiến trình dạy học:

    Hoạt động 1: tra bài cũ:

    HS 1: Làm BT 8a(SGK)

    HS 2: Làm BT 9b(SGK)

    Hoạt động 2:

    1. Quy tắc thế:

    – Xét hệ phương trình sau:

    – Từ pt (1) , hãy biểu diễn x theo y ?

    – Lấy kết quả trên thế vào chỗ của x trong pt (2) thì ta sẽ được pt nào ?

    – Có nhận xét gì về pt vừa tìm được ?

    – Dùng pt (1′) cho pt (1), pt (2′) cho pt (2)ta được hệ pt nào?

    – Hệ này như thế nào với hệ (I) ?

    – Giải hệ pt mới và kết luận nghiệm của hệ đã cho?

    – Qua ví dụ trên , hãy nêu quy tắc thế?

    – ở bước 1 ta có thể biểu diễn y theo x được không ? Ta được biểu thức nào ?

    Ví dụ1:Xét hệ phương trình:

    (I) x – 3y = 2 (1)

    -2x + 5y = 1 (2)

    B: Từ (1) ta có : x = 3y + 2 (1′)

    vào (2) ta được: -2(3y +2) + 5y = 1 (2′)

    B: (I) x = 3y + 2 (1′)

    -2(3y + 2) + 5y = 1 (2′)

    Vậy hệ có nghiệm duy nhất là (-13 ; -5)

    Quy tắc thế : (SGK)

    Hoạt động 3:

    2. áp dụng:

    – áp dụng quy tắc thế để giải hệ phương trình sau.

    – HS đứng tại chỗ trình bày bài dưới sự hướng dẫn của GV.

    – GV cho HS quan sát minh hoạ bằng đồ thị của hệ pt này và kết luận.

    – HS thực hiện ?1(theo nhóm)

    – Sau đó GV thu bảng nhóm treo lên, HS lớp quan sát ,nhận xét.

    – Khi giải hệ pt bằng phương pháp đồ thị thì hệ vô nghiệm , vô số nghiệm có đặc điểm gì?

    – Khi giải hệ pt bằng phương pháp thế thì hệ vô số nghiệm hoặc vô nghiệm có đặc điểm gì?

    – Đọc chú ý (SGK)

    – HS đọc VD3 (SGK)

    – HS làm ?2 và ?3 SGK

    Ví dụ2: Giải hệ phương trình bằng phương pháp thế

    (I) 2x – y = 3 (1)

    x + 2y = 4 (2)

    Giải :

    Ta có :

    (I)

    Vậy hệ có một nghiệm duy nhất (2; 1)

    ?1. Giải hệ pt sau

    Nêu các bước giải hệ phương trình bằng phương pháp thế?

    Làm BT 12a; 13a; 14a(SGK)

    Hoạt động 5:

    Hướng dẫn về nhà:

    Nắm vững hai bước giải hệ pt bằng phương pháp thế.

    Làm BT 13b;14b;15;16(SGK)

    Đọc trước §4.Giải hệ pt bằng phương pháp cộng đại số.

    --- Bài cũ hơn ---

  • Kĩ Thuật Giải Hệ Phương Trình
  • Cđ Giải Hpt Không Mẫu Mực
  • Một Số Lưu Ý Khi Giải Phương Trình Lượng Giác
  • Chuyên Đề Phương Trình Nghiệm Nguyên
  • Sách Giải Bài Tập Toán Lớp 8 Bài 4: Bất Phương Trình Bậc Nhất Một Ẩn
  • Chuyên Đề: Phương Pháp Giải Phương Trình Vô Tỉ

    --- Bài mới hơn ---

  • Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Bài Tập Vận Dụng
  • Phương Trình Lượng Giác Chứa Căn Và Phương Trình Lượng Giác Chứa Giá Trị Tuyệt Đối
  • Kiến Thức Cơ Bản Đại Số Lớp 10: Phương Trình Và Hệ Phương Trình
  • Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica
  • Chuyên Đề “Phương Trình Nghiệm Nguyên”
  • CHUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình Phương pháp Thông thường nếu ta gặp phương trình dạng : , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau và ta sử dụng phép thế :ta được phương trình : Ví dụ Giải phương trình sau : Giải: Đk Bình phương 2 vế không âm của phương trình ta được:, để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : Bình phương hai vế ta có : Thử lại x=1 thỏa Nhận xét : Nếu phương trình : Mà có : , thì ta biến đổi phương trình về dạng : sau đó bình phương ,giải phương trình hệ quả Bài 2. Giải phương trình sau : Giải: Điều kiện : Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : , từ nhận xét này ta có lời giải như sau : Bình phương 2 vế ta được: Thử lại : l nghiệm Qua lời giải trên ta có nhận xét : Nếu phương trình : Mà có : thì ta biến đổi 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung Phương pháp Một số phương trình vô tỉ ta có thể nhẩm được nghiệm như vậy phương trình luôn đưa về được dạng tích ta có thể giải phương trình hoặc chứng minh vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía vô nghiệm Ví dụ Bài 1 . Giải phương trình sau : Giải: Ta nhận thấy : v Ta có thể trục căn thức 2 vế : Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . Bài 2. Giải phương trình sau (OLYMPIC 30/4 đề nghị) : Giải: Để phương trình có nghiệm thì : Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng , để thực hiện được điều đó ta phải nhóm , tách như sau : Dễ dàng chứng minh được : Bài 3. Giải phương trình : Giải :Đk Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình Ta chứng minh : Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp Nếu phương trình vô tỉ có dạng , mà : ở dây C có thể là hàng số ,có thể là biểu thức của . Ta có thể giải như sau : , khi đĩ ta có hệ: b) Ví dụ Bài 4. Giải phương trình sau : Giải: Ta thấy : không phải là nghiệm Xét Trục căn thức ta có : Vậy ta có hệ: Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0 v x= Bài 5. Giải phương trình : Ta thấy : , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt thì bài toán trở nên đơn giản hơn Bài tập đề nghị Giải các phương trình sau : (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) 3. Phương trình biến đổi về tích Sử dụng đẳng thức Bài 1. Giải phương trình : Giải: Bi 2. Giải phương trình : Giải: + , không phải là nghiệm + , ta chia hai vế cho x: Bài 3. Giải phương trình: Giải: pt Bài 4. Giải phương trình : Giải: Đk: Chia cả hai vế cho : Dùng hằng đẳng thức Biến đổi phương trình về dạng : Bài 1. Giải phương trình : Giải: Đk: khi đó pt đ cho tương đương : Bài 2. Giải phương trình sau : Giải: Đk: phương trình tương đương : Bài 3. Giải phương trình sau : Giải : pttt II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trình vô vô tỉ , để giải chúng ta có thể đặt và chú ý điều kiện của nếu phương trình ban đầu trở thành phương trình chứa một biến quan trọng hơn ta có thể giải được phương trình đó theo thì việc đặt phụ xem như “hoàn toàn ” .Nói chung những phương trình mà có thể đặt hoàn toàn thường là những phương trình dễ . Bài 1. Giải phương trình: Điều kiện: Nhận xét. Đặt thì phương trình có dạng: Thay vào tìm được Bài 2. Giải phương trình: Giải Điều kiện: Đặt thì . Thay vào ta có phương trình sau: Ta tìm được bốn nghiệm là: Do nên chỉ nhận các gái trị Từ đó tìm được các nghiệm của phương trình l: Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện Ta được: , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : và đưa về hệ đối xứng (Xem phần dặt ẩn phụ đưa về hệ) Bài 3. Giải phương trình sau: Điều kiện: Đặt thì phương trình trở thnh: ( với Từ đó ta tìm được các giá trị của Bài 4. (THTT 3-2005) Giải phương trình sau : Giải: đk Đặt pttt Bài 5. Giải phương trình sau : Giải: Điều kiện: Chia cả hai vế cho x ta nhận được: Đặt , ta giải được. Bài 6. Giải phương trình : Giải: không phải là nghiệm , Chia cả hai vế cho x ta được: Đặt t=, Ta có : Bài tập đề nghị Giải các phương trình sau Nhận xét : đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp bài đơn giản, đôi khi phương trình đối với lại quá khó giải 2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến : Chúng ta đã biết cách giải phương trình: (1) bằng cách Xét phương trình trở thành : thử trực tiếp Các trường hợp sau cũng đưa về được (1) Chúng ta hãy thay các biểu thức A(x) , B(x) bởi các biểu thức vô tỉ thì sẽ nhận được phương trình vô tỉ theo dạng này . a) . Phương trình dạng : Như vậy phương trình có thể giải bằng phương pháp trên nếu Xuất phát từ đẳng thức : Hãy tạo ra những phương trình vô tỉ dạng trên ví dụ như: Để có một phương trình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phương trình bậc hai giải “ nghiệm đẹp” Bài 1. Giải phương trình : Giải: Đặt phương trình trở thnh : Tìm được: Bài 2. Giải phương trình : Bài 3: giải phương trình sau : Giải: Đk: Nhận xt : Ta viết Đồng nhất thứ ta được Đặt , ta được: Ta được : Bài 4. Giải phương trình : Giải: Nhận xét : Đặt ta hy biến pt trn về phương trình thuần nhất bậc 3 đối với x và y : Pt có nghiệm : b).Phương trình dạng : Phương trình cho ở dạng này thường khó “phát hiện “ hơn dạng trên , nhưg nếu ta bình phương hai vế thì đưa về được dạng trên. Bài 1. giải phương trình : Giải: Ta đặt : khi đó phương trình trở thành : Bài 2.Giải phương trình sau : Giải Đk . Bình phương 2 vế ta có : Ta có thể đặt : khi đó ta có hệ : Do . Bài 3. giải phương trình : Giải: Đk . Chuyển vế bình phương ta được: Nhận xét : không tồn tại số để : vậy ta không thể đặt . Nhưng may mắn ta có : Ta viết lại phương trình: . Đến đây bài toán được giải quyết . Các em hãy tự sáng tạo cho mình những phương trình vô tỉ “đẹp “ theo cách trên 3. Phương pháp đặt ẩn phụ không hoàn toàn Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát . Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn : Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rt thay vo thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích 4. Đặt nhiều ẩn phụ đưa về tích Xuất phát từ một số hệ “đại số “ đẹp chúng ta có thể tạo ra được những phương trình vô tỉ mà khi giài nó chúng ta lại đặt nhiều ẩn phụ và tìm mối quan hệ giữa các ẩn phụ để đưa về hệ Xuất phát từ đẳng thức , Ta có Từ nhận xét này ta có thể tạo ra những phương trình vô tỉ có chứa căn bậc ba . Bài 1. Giải phương trình : Giải : , ta có : , giải hệ ta được: Bài 2. Giải phương trình sau : Giải . Ta đặt : , khi đó ta có : Bài 3. Giải các phương trình sau 5. Đặt ẩn phụ đưa về hệ: 5.1 Đặt ẩn phụ đưa về hệ thông thường Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v Bài 1. Giải phương trình: Đặt Khi đó phương trình chuyển về hệ phương trình sau: , giải hệ này ta tìm được . Tức là nghiệm của phương trình là Bài 2. Giải phương trình: Điều kiện: Đặt Ta đưa về hệ phương trình sau: Giải phương trình thứ 2: , từ đó tìm ra rồi thay vào tìm nghiệm của phương trình. Bài 3. Giải phương trình sau: Điều kiện: Đặt thì ta đưa về hệ phương trình sau: Vậy Bài 8. Giải phương trình: Giải Điều kiện: Đặt . Khi đó ta được hệ phương trình: 5.2 Xây dựng phương trình vô tỉ từ hệ đối xứng loại II Ta hãy đi tìm nguồn gốc của những bài toán giải phương trình bằng cách đưa về hệ đối xứng loại II Ta xét một hệ phương trình đối xứng loại II sau : việc giải hệ này thì đơn giản Bây giời ta sẽ biến hệ thành phương trình bằng cách đặt sao cho (2) luôn đúng , , khi đó ta có phương trình : Vậy để giải phương trình : ta đặt lại như trên và đưa về hệ Bằng cách tương tự xét hệ tổng quát dạng bậc 2 : , ta sẽ xây dựng được phương trình dạng sau : đặt , khi đó ta có phương trình : Tương tự cho bậc cao hơn : Tóm lại phương trình thường cho dưới dạng khia triển ta phải viết về dạng : v đặt để đưa về hệ , chú ý về dấu của ??? Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. Giải phương trình: Điều kiện: Ta có phương trình được viết lại là: Đặt thì ta đưa về hệ sau: Trừ hai vế của phương trình ta được Giải ra ta tìm được nghiệm của phương trình là: Bài 6. Giải phương trình: Giải Điều kiện Ta biến đổi phương trình như sau: Đặt ta được hệ phương trình sau: Với Với Kết luận: Nghiệm của phương trình là Các em hãy xây dựng một sồ hệ dạng này ? Dạng hệ gần đối xứng Ta xt hệ sau : đây không phải là hệ đối xứng loại 2 nhưng chúng ta vẫn giải hệ được , và từ hệ này chúng ta xây dưng được bài toán phương trình sau : Bài 1 . Giải phương trình: Nhận xét : Nếu chúng ta nhóm như những phương trình trước : Đặt thì chúng ta không thu được hệ phương trình mà chúng ta có thể giải được. Để thu được hệ (1) ta đặt : , chọn sao cho hệ chúng ta có thể giải được , (đối xứng hoặc gần đối xứng ) Ta có hệ : Để giải hệ trên thì ta lấy (1) nhân với k cộng với (2): và mong muốn của chúng ta là có nghiệm Nên ta phải có : , ta chọn được ngay Ta có lời giải như sau : Điều kiện: , Đặt Ta có hệ phương trình sau: Với Với Kết luận: tập nghiệm của phương trình là: Chú ý : khi đã làm quen, chúng ta có thể tìm ngay bằng cách viết lại phương trình ta viết lại phương trình như sau: khi đó đặt , nếu đặt thì chúng ta không thu được hệ như mong muốn , ta thấy dấu của cùng dấu với dấu trước căn. Một cách tổng quát . Xét hệ: để hệ có nghiệm x = y thì : A-A’=B và m=m’, Nếu từ (2) tìm được hàm ngược thay vào (1) ta được phương trình Như vậy để xây dựng pt theo lối này ta cần xem xét để có hàm ngược và tìm được và hơn nữa hệ phải giải được. Một số phương trình được xây dựng từ hệ. Giải các phương trình sau Giải (3): Phương trình : Ta đặt : Các em hãy xây dựng những phương trình dạng này ! III. PHƯƠNG PHÁP ĐÁNH GIÁ 1. Dùng hằng đẳng thức : Từ những đánh giá bình phương : , ta xây dựng phương trình dạng Từ phương trình ta khai triển ra có phương trình : 2. Dùng bất đẳng thức Một số phương trình được tạo ra từ dấu bằng của bất đẳng thức: nếu dấu bằng ỏ (1) và (2) cùng dạt được tại thì là nghiệm của phương trình Ta có : Dấu bằng khi và chỉ khi và , dấu bằng khi và chỉ khi x=0. Vậy ta có phương trình: Đôi khi một số phương trình được tạo ra từ ý tưởng : khi đó : Nếu ta đoán trước được nghiệm thì việc dùng bất đẳng thức dễ dàng hơn, nhưng có nhiều bài nghiệm là vô tỉ việc đoán nghiệm không được, ta vẫn dùng bất đẳng thức để đánh giá được Bài 1. Giải phương trình (OLYMPIC 30/4 -2007): Giải: Đk Ta có : Dấu bằng Bài 2. Giải phương trình : Giải: Đk: Biến đổi pt ta có : Áp dụng bất đẳng thức Bunhiacopxki: Áp dụng bất đẳng thức Côsi: Dấu bằng Bài 3. giải phương trình: Ta chứng minh : và Bài tập đề nghị . Giải các phương trình sau 3. Xây dựng bài toán từ tính chất cực trị hình học 3.1 Dùng tọa độ của véc tơ Trong mặt phẳng tọa độ Oxy, Cho các véc tơ: khi đó ta có Dấu bằng xẩy ra khi và chỉ khi hai véc tơ cùng hướng , chú ý tỉ số phải dương , dấu bằng xẩy ra khi và chỉ khi 3.2 Sử dụng tính chất đặc biệt về tam giác Nếu tam giác là tam giác đều , thì với mọi điểm M trên mặt phẳng tam giác, ta luôn có với O là tâm của đường tròn .Dấu bằng xẩy ra khi và chỉ khi . Cho tam giác ABC có ba góc nhọn và điểm M tùy ý trong mặt mặt phẳng Thì MA+MB+MC nhỏ nhất khi điểm M nhìn các cạnh AB,BC,AC dưới cùng một góc Bài tập IV. PHƯƠNG PHÁP HÀM SỐ 1.Xây dựng phương trình vô tỉ dựa theo hàm đơn điệu Dựa vào kết quả : “ Nếu là hàm đơn điệu thì ” ta có thể xây dựng được những phương trình vô tỉ Xuất phát từ hàm đơn điệu : mọi ta xây dựng phương trình : , Rút gọn ta được phương trình Từ phương trình thì bài toán sẽ khó hơn Để gải hai bài toán trên chúng ta có thể làm như sau : Đặt khi đó ta có hệ : cộng hai phương trình ta được: = Hãy xây dựng những hàm đơn điệu và những bài toán vô tỉ theo dạng trên ? Bài 1. Giải phương trình : Giải: Xét hàm số , là hàm đồng biến trên R, ta có Bài 2. Giải phương trình Giải . Đặt , ta có hệ : Xét hàm số : , là hàm đơn điệu tăng. Từ phương trình Bài 3. Giải phương trình : V. PHƯƠNG PHÁP LƯỢNG GIÁC HÓA 1. Một số kiến thức cơ bản: Nếu thì có một số t với sao cho : và một số y với sao cho Nếu thì có một số t với sao cho : và một số y với sao cho Với mỗi số thực x có sao cho : Nếu : , là hai số thực thỏa: , thì có một số t với , sao cho Từ đó chúng ta có phương pháp giải toán : Nếu : thì đặt với hoặc với Nếu thì đặt , với hoặc , với Nếu : , là hai số thực thỏa: , thì đặt với Nếu , ta có thể đặt : , với , tương tự cho trường hợp khác X là số thực bất kỳ thi đặt : Tại sao lại phải đặt điều kiện cho t như vậy ? Chúng ta biết rằng khi đặt điều kiện thì phải đảm bảo với mỗi có duy nhất một , và điều kiện trên để đảm bào điều này . (xem lại vòng tròn lượng giác ) 2. Xây dựng phương trình vô tỉ bằng phương pháp lượng giác như thế nào ? Từ công phương trình lượng giác đơn giản: , ta có thể tạo ra được phương trình vô tỉ Chú ý : ta có phương trình vô tỉ: (1) Nếu thay bằng ta lại có phương trình : (2) Nếu thay x trong phương trình (1) bởi : (x-1) ta sẽ có phương trình vố tỉ khó: (3) Việc giải phương trình (2) và (3) không đơn giản chút nào ? Tương tự như vậy từ công thức sin 3x, sin 4x,.hãy xây dựng những phương trình vô tỉ theo kiểu lượng giác . 3. Một số ví dụ Bài 1. Giải phương trình sau : Giải: Điều kiện : Với : thì (ptvn) ta đặt : . Khi đó phương trình trở thành: vậy phương trình có nghiệm : Bài 2. Giải các phương trình sau : DH: Đs: HD: chứng minh vô nghiệm Bài 3 . Giải phương trình sau: Giải: Lập phương 2 vế ta được: Xét : , đặt . Khi đó ta được mà phương trình bậc 3 có tối đa 3 nghiệm vậy đó cũng chính là tập nghiệm của phương trình. Bài 4. .Giải phương trình Giải: đk: , ta có thể đặt Khi đó ptt: Phương trình có nghiệm : Bài 5 .Giải phương trình : Giải: đk Ta có thể đặt : Khi đó pttt. Kết hợp với điều kiện ta có nghiệm Bài tập tổng hợp Giải các phương trình sau (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) CHUYÊN ĐỀ: PHƯƠNG TRÌNH VÔ TỶ PHƯƠNG PHÁP BIỂN ĐỔI TƯƠNG ĐƯƠNG Dạng 1 : Phương trình Lưu ý: Điều kiện (*) được chọn tuỳ thuôc vào độ phức tạp của hay Dạng 2: Phương trình Dạng 3: Phương trình (chuyển về dạng 2) và ta sử dụng phép thế :ta được phương trình : Bài 1: Giải phương trình: a) b) c) d) e) f) g) h) i) Bài 2: Tìm m để phương trình sau có nghiệm: Bài 3: Cho phương trình: Giải phương trình khi m=1 Tìm m để phương trình có nghiệm. Bài 4: Cho phương trình: Giải phương trình khi m=3 Với giá trị nào của m thì phương trình có nghiệm. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Phương pháp đặt ẩn phụ thông thường. Nếu bài toán có chứa và khi đó đặt (với điều kiện tối thiểu là . đối với các phương trình có chứa tham số thì nhất thiết phải tìm điều kiện đúng cho ẩn phụ). Nếu bài toán có chứa , và (với k là hằng số) khi đó có thể đặt : , khi đó Nếu bài toán có chứa và khi đó có thể đặt: suy ra Nếu bài toán có chứa thì đặt với hoặc với Nếu bài toán có chứa thì đặt với hoặc với Nếu bài toán có chứa ta có thể đặt với Bài 1: Giải phương trình: a) b) c) d) e) f) g) h) i) Bài 2: Giải phương trình: a) b) c) d) e) f) Bài 3: Cho phương trình: Giải phương trình với m=3 Tìm m để phương trình có nghiệm Tìm m để phương trình có nghiệm duy nhất Bài 4: Cho phương trình: Giải phương trình với Tìm m để phương trình có nghiệm. Bài 5: Cho phương trình: Giải phương trình với m = 9 Tìm m để phương trình có nghiệm. 2. Phương pháp đặt ẩn phụ không hoàn toàn Là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát. Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rt thay vo thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích. Bài tập: Giải các phương trình sau: a) b) c) d) 3. Phương pháp đặt ẩn phụ chuyển về hệ. a) Dạng thông thường: Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v. Chẳng hạn đối với phương trình: ta có thể đặt: từ đó suy ra . Khi đó ta có hệ Bài tập: Giải các phương trình sau: a) b) c) b) Dạng phương trình chứa căn bậc hai và lũy thừa bậc hai: với Cách giải: Đặt: khi đó phương trình được chuyển thành hệ: Nhận xét: Dể sử dụng được phương pháp trên cần phải khéo léo biến đổi phương trình ban đầu về dạng thỏa mãn điều kiện trên để đặt ẩn phụ.Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. c) Dạng phương trình chứa căn bậc ba và lũy thừa bậc ba. với Cách giải: Đặt khi đó phương trình được chuyển thành hệ: Bài tập: Giải các phương trình sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) PHƯƠNG PHÁP HÀM SỐ Sử dụng các tính chất của hàm số để giải phương trình là dạng toán khá quen thuộc. Ta có 3 hướng áp dụng sau đây: Hướng 1: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng: Bước 2: Xét hàm số Bước 3: Nhận xét: Với do đó là nghiệm Với do đó phương trình vô nghiệm Với do đó phương trình vô nghiệm Vậy là nghiệm duy nhất của phương trình Hướng 2: thực hiện theo các bước Bước 1: Chuyển phương trình về dạng: Bước 2: Dùng lập luận khẳng định rằng và g(x) có những tính chất trái ngược nhau và xác định sao cho Bước 3: Vậy là nghiệm duy nhất của phương trình. Hướng 3: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng Bước 2: Xét hàm số , dùng lập luận khẳng định hàm số đơn điệu Bước 3: Khi đó Ví dụ: Giải phương trình : Giải: pt Xét hàm số , là hàm đồng biến trên R, ta có Bài tập: Giải phương trình: a) b) c) d) e) f)

    --- Bài cũ hơn ---

  • Các Bài Toán Tìm 2 Số Khi Biết Tổng Và Tích.
  • Kmno4 + Hcl = Kcl + Mncl2 + Cl2 + H2O
  • Kmno4 = O2 + Mno2 + K2Mno4
  • Kmno4 = Mno2 + O2 + K2Mno4
  • Hướng Dẫn Giải Phương Trình Bậc 2 Trong Java
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay

    --- Bài mới hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Môt Số Lưu Ý Khi Giải Pt Lượng Giác
  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải Toán 10 Bài 2. Hàm Số Y = Ax + B
  • Cđ Pt Đt Y = Ax + B Chuyen De Viet Phuong Trinh Duong Thang Yax B Doc
  • Cách giải phương trình vô tỉ bằng phương pháp sử dụng biểu thức liên hợp cực hay

    Phương pháp giải

    Bước 1: Tìm đkxđ.

    Bước 2: Nhẩm nghiệm (thường là nghiệm nguyên). Giả sử phương trình có nghiệm x = a

    Bước 3: Tách, thêm bớt rồi nhân liên hợp sao cho xuất hiện nhân tử chung (x – a).

    Các biểu thức liên hợp thường dùng:

    Bước 4. Chứng minh biểu thức còn lại luôn âm hoặc dương

    Bước 5. Đối chiếu điều kiện, kết luận nghiệm.

    Ví dụ minh họa

    Ví dụ 1: Giải phương trình:

    Hướng dẫn giải:

    Phân tích: Để ý thấy x = 2 là nghiệm của phương trình, do đó ta có thể liên hợp và 1; và 2.

    Đkxđ: x ≥ -2 .

    Ta có:

    ⇔ x = 2 (t.m đkxđ)

    Vậy phương trình có nghiệm x = 2.

    Ví dụ 2: Giải phương trình:

    Hướng dẫn giải:

    Đkxđ: ∀ x ∈ R

    Ta có:

    Vậy phương trình có hai nghiệm .

    Ví dụ 3: Giải phương trình

    Hướng dẫn giải:

    Gợi ý: Nhẩm được phương trình có nghiệm x = 2 nên ta tách các biểu thức để liên hợp sao cho xuất hiện nhân tử (x – 2).

    Đkxđ: ∀ x ∈ R

    Khi đó:

    Lại có

    (*) ⇔ x – 2 = 0 ⇔ x = 2.

    Vậy phương trình có nghiệm x = 2.

    Bài tập trắc nghiệm tự luyện

    Bài 1: Biểu thức liên hợp của là:

    Bài 2: Biểu thức liên hợp của là:

    Bài 5: Nghiệm của phương trình có nghiệm là:

    A. x = √2 B. x = -√2

    C. x = √3 D. x = -√3

    Bài 6: Giải phương trình

    Hướng dẫn giải:

    Đkxđ:

    ⇔ x – 2 = 0 (Vì biểu thức trong luôn dương)

    ⇔ x = ±√3(t.m đkxđ).

    Vậy phương trình có hai nghiệm x = ±√3 .

    Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

    Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

    --- Bài cũ hơn ---

  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ Cực Hay
  • Đề Tài Skkn “giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ”
  • Hướng Dẫn Học Sinh Lớp 9 Một Số Phương Pháp Giải Phương Trình Vô Tỉ

    --- Bài mới hơn ---

  • 4 Cách Giải Phương Trình Vô Tỉ Cực Hay
  • Pp Giải Pt&bpt Vô Tỷ
  • Giải Và Biện Luận Phương Trình Bậc Nhất
  • Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai
  • Giải Và Biện Luận Phương Trình Bậc Hai
  • Môn toán ở cấp THCS là môn học cung cấp kiến thức nền để các em học tập tốt các bộ môn khác, cũng như làm nền tảng để các em học tốt ở cấp THPT.

    Trong những năm qua nhìn chung chất lượng môn toán của học sinh trường THCS Thiệu Thành được nâng lên qua các kì thi học sinh giỏi cũng như thi vào THPT.

    Trong chương trình Đại số 9 thì phương trình vô tỉ là dạng toán tương đối khó đối với học sinh .

    Dạng toán giải phương trình vô tỉ có nhiều cách giải, vì vậy đòi hỏi học sinh phải biết vận dụng kiến thức một cách linh hoạt. Có những lời giải xem ra “thiếu tự nhiên” nhưng thật ra rất độc đáo. Với phương trình vô tỉ, các em chỉ được làm quen ở lớp 9 dưới dạng đơn giản. Toán giải phương trình vô tỉ trong chương trình đại số 9, được đề cập nhiều trong các loại sách tham khảo, do vậy giáo viên rất khó trong việc sưu tầm, tuyển chọn.

    A. ĐẶT VẤN ĐỀ Môn toán ở cấp THCS là môn học cung cấp kiến thức nền để các em học tập tốt các bộ môn khác, cũng như làm nền tảng để các em học tốt ở cấp THPT. Trong những năm qua nhìn chung chất lượng môn toán của học sinh trường THCS Thiệu Thành được nâng lên qua các kì thi học sinh giỏi cũng như thi vào THPT. Trong chương trình Đại số 9 thì phương trình vô tỉ là dạng toán tương đối khó đối với học sinh . Dạng toán giải phương trình vô tỉ có nhiều cách giải, vì vậy đòi hỏi học sinh phải biết vận dụng kiến thức một cách linh hoạt. Có những lời giải xem ra "thiếu tự nhiên" nhưng thật ra rất độc đáo. Với phương trình vô tỉ, các em chỉ được làm quen ở lớp 9 dưới dạng đơn giản. Toán giải phương trình vô tỉ trong chương trình đại số 9, được đề cập nhiều trong các loại sách tham khảo, do vậy giáo viên rất khó trong việc sưu tầm, tuyển chọn. Để góp phần vào việc giải quyết các vấn đề khó khăn trên, tôi mạnh dạn thực hiện việc sưu tầm, tuyển chọn một số dạng bài bài tập về phương trình vô tỉ và phương pháp giải áp dụng cho từng dạng để viết thành đề tài "Hướng dẫn học sinh lớp 9 một số phương pháp giải phương trình vô tỉ" giúp cho việc dạy và học đạt kết quả cao. B. GIẢI QUYẾT VẤN ĐỀ I. Cơ sở lý luận. Căn cứ vào thực tế dạy và học hệ thống bài tập về giải phương trình vô tỉ của chương trình đại số 9 tôi thấy hệ thống bài tập trong sách giáo khoa, sách bài tập do bộ GD&ĐT ấn hành còn đơn giản, chưa đáp ứng đầy đủ yêu cầu của dạng toán này bởi trên thực tế bài tập về phương trình vô tỷ rất đa dạng, phong phú và là một thể loại toán khó của đại số THCS. Khi dạy phần này, nhất là đối với học sinh khá giỏi đòi hỏi giáo viên phải tự biên soạn, sưu tầm và lựa chọn các dạng bài phù hợp có thể đề cập và khai thác trong các kỳ thi. Vì thế mà nội dung giảng dạy chưa thống nhất. Là giáo viên chúng ta luôn mong muốn cung cấp cho học sinh "chiếc chìa khoá" để giải từng dạng cụ thể của phương trình. Song không phải dạng phương trình nào cũng có một quy tắc nhất định. Qua quá trình giảng dạy, tham khảo đồng nghiệp và tham khảo học hỏi ở thầy cô. Tôi mạnh dạn phân dạng phương trình vô tỉ và cách giải từng dạng, đồng thời đưa ra một số phương pháp giải phương trình vô tỉ với mục đích giúp học sinh hiểu sâu sắc phương trình vô tỉ dưới nhiều góc độ hơn và làm nhẹ nhàng quá trình giải phương trình vô tỉ cho học sinh. II. Thực trạng của vấn đề. 1. Về phía giáo viên: Với kinh nghiệm của bản thân, qua một số năm dạy lớp 9, bồi dưỡng học sinh giỏi cũng như trực tiếp ôn thi vào THPH, đối với dạng toán giải phương trình vô tỉ ngoài những kiến thức cơ bản mà sách giáo khoa và sách bài tập đã đề cập đến, để xây dựng một phương pháp chung cho giải phương trình nói chung và phương trình vô tỉ nói riêng là điều không thể. Song chúng ta có thể đưa ra một số dạng và phương pháp dựa trên những kiến thức mà các em đã được học, qua đó có thể giúp các em hình thành con đường và cách thức cho việc giải dạng toán này. 2. Về phía học sinh: Thực tế dạy trên lớp cho thấy, học sinh còn lúng túng trong việc nhận dạng và đưa ra cách giải phù hợp cho phương trình vô tỉ trong sách giáo khoa và sách bài tập. Trong quá trình ôn tập, sau khi các em đã được học và nghiên cứu một số phương pháp giải phương trình vô tỉ mà giáo viên dạy thì đa số các em đã nhận được dạng và đưa ra phương pháp giải phù hợp. Đối với học sinh đội tuyển toán dự thi cấp huyện các em đã áp dụng một số phương pháp để giải phương trình vô tỉ mà đề bài đưa ra. Trong năm học 2012 - 2013 qua quá trình ôn tập một số phương pháp giải phương trình vô tỉ kết hợp với tham khảo nghiên cứu tài liệu của học sinh, qua kết quả khảo sát đánh giá của giáo viên cho thấy các em đã vận dụng được vào giải một số phương trình chứa căn thức bậc hai ở các dạng cơ bản theo sự phân dạng của giáo viên . Kết quả khảo sát với lớp 9B trong năm học 2012 - 2013 như sau: Sĩ số Giỏi Khá Trung bình Yếu 30 SL % SL % SL % SL % 7 23.3 10 33.4 7 23.3 6 20 Sau thời gian vận dụng một số phương pháp giải phương trình vô tỉ trong năm 2012 - 2013, sang năm học này tôi đã và đang tiếp tục vận dụng đề tài "Hướng dẫn học sinh lớp 9 một số phương pháp giải phương trình vô tỉ" trong công tác bồi dưỡng học sinh giỏi ôn thi cấp huyện bằng việc thực hiện một số giải pháp và biện pháp sau. III- Giải pháp và tổ chức thực hiện : 1. Giải pháp thực hiện : Trong thời lượng của đề tài khi tiến hành "Hướng dẫn học sinh lớp 9 một số phương pháp giải phương trình vô tỉ" tôi đã tiến hành các nội dung cơ bản: - Dựa trên cở sở của phép toán khai phương để hướng dẫn học sinh phương pháp nâng lên lũy thừa cùng bậc đối với một số dạng phương trình chứa căn thức bậc hai cơ bản. Trong các ví dụ đưa ra khi giải phương trình hệ quả tôi chỉ mới dừng lại ở giải phương trình bậc nhất, bậc hai một ẩn. - Giới thiệu một số phương pháp để học sinh có thể vận dụng trong quá trình giải phương trình vô tỉ ở cấp THCS và là kiến thức nền cơ bản để các em học tốt ở cấp THPT. - Hướng dẫn cho các em một số ví dụ và bài tập vận dụng từng phương pháp và có thể vận dụng một số phương pháp trong một bài tập, từ đó thấy được phương pháp thích hợp trong bài tập sau này. - Đưa ra một số sai lầm học sinh có thể mắc phải trong quá trình giải phương trình chứa căn thức bậc hai. 2. Tổ chức thực hiện: 2.1. Phương trình vô tỷ: 2.1.1.Định nghĩa: Phương trình vô tỷ là phương trình có chứa ẩn số trong căn thức. 2.1.2. Các bước giải phương trình + Tìm tập xác định của phương trình + Dùng các phép biến đổi tương đương đưa về dạng phương trình đã học. + Giải phương trình vừa tìm được + Đối chiếu kết quả tìm được với tập xác định và kết luận nghiệm. Chú ý: Với những phương trình có TXĐ là (trong quá trình biến đổi không đặt điều kiện) khi tìm được nghiệm phải thử lại. 2.1.3. Các kiến thức cơ bản về căn thức: + Số âm không có căn bậc chẵn + Muốn nâng lên luỹ thừa bậc chẵn cả hai vế của phương trình để được phương trình tương đương, phải đặt điều kiện để hai vế không âm. + Với hai số a, b không âm, ta có: + Với A là một biểu thức, ta có: 2.2. Phương pháp nâng lên lũy thừa giải một số dạng phương trình vô tỉ chứa căn thức bậc hai. 2.2.1. Dạng 1: (1) Cách giải: - Tìm ĐKXĐ của PT: (2) - Bình phương hai vế PT (1) ta được: (3) - Giải PT (3), chọn nghiệm thỏa mản ĐK (2). Suy ra nghiệm của PT (1) Chú ý: Trong quá trình giải lưu ý học sinh không cần lấy điều kiện để . Ví dụ 1: Giải phương trình HD: Ta có . Vậy PT có một nghiệm duy nhất x = 5 Ví dụ 2: Giải PT: (1) HD: ĐKXĐ: Bình phương hai vế rồi rút gọn PT (1), được PT: (2) Giải PT (2) được x = 5 (nhận) , x = 13 (loại) Vậy PT (1) có một nghiệm duy nhất x = 5. 2.2.2 Dạng 2: (1) Cách giải: - Tìm ĐKXĐ của PT: và (2) - Bình phương hai vế PT (1) ta được: (3) - Giải PT (3), chọn nghiệm thỏa mản ĐK (2). Suy ra nghiệm của PT (1) Ví dụ: Giải phương trình (1) HD: ĐKXĐ: x Bình phương hai vế PT(1), rút gọn ta được: x = 5 (nhận) Vậy PT (1) có một nghiệm duy nhất x = 5. 2.2.3. Dạng 3: (1) Cách giải: + Nếu < 0 thì PT(1) vô nghiêm. + Nếu = 0, ta có: (I) Nếu hệ (I) có nghiêm thì PT(1) có nghiệm. Bình phương hai vế PT(1), biến đổi được PT: Phương trình (3) có dạng 1 nên giải theo phương pháp của dạng 1. Chú ý: Tượng tự, giải phương trình dang thêm ĐK: Ví dụ 1: Giải phương trình. = 0 (1) HD: ĐKXĐ: Với thì . Từ (1) được (nhận) Vậy PT(1) có một nghiệm duy nhất x = 3. Ví dụ 2: Giải phương trình. (2) HD: ĐKXĐ: . Bình phương hai vế PT(1), rút gọn được PT: (với ) (3) Giải PT(3), được x = 5 (nhận) , x = 145 (loại) Vậy PT(2) có một nghiệm duy nhất: x = 5. 2.2.4. Dạng 4: . Cách giải như dạng 3 thêm điều kiện Chú ý: Giải tương tự với dạng Ví dụ: Giải phương trình: (1) HD: ĐKXĐ Ta có: (1) (nhận) hoặc (loại). Vậy PT(1) có một nghiệm x = 0. 2.2.5. Dạng 5: (1) Cách giải: Tìm ĐKXĐ của PT: và Đặt ẩn phụ: (với ) (2) (3) Thay vào (1) được phương trình bậc hai ẩn y. Giải PT bậc hai ẩn y, chọn nghiệm y thích hợp, thay vào (2) được phương trình dạng 2. Giải phương trình thu được. Suy ra nghiêm của PT(1) Ví dụ: Giải phương trình (1) HD: ĐKXĐ: Đặt (với ) Thay vào PT(1) thu gọn, được PT: Suy ra (2) Giải PT (2) với ĐK: được x = 5 (nhận), x = 96 (loại) Vậy PT(1) có một nghiệm duy nhất x = 5. 2.2.6. Dạng 6: (1) Cách giải: Tìm ĐKXĐ của PT: (2) Bình phương 2 vế phương trình (1) đưa về dạng: Tuỳ theo từng trường hợp cụ thể để có cách giải phương trình vô tỷ phù hợp. Chú ý: Nếu f(x) - g(x) = a và h(x) - p(x) = b với a,b R thì ta nhân và chia mỗi vế của PT(1) với biểu thức liên hợp của chúng Ví dụ: Giải phương trình (1)

    --- Bài cũ hơn ---

  • Cách Giải Bất Phương Trình Vô Tỷ Chứa Căn
  • Cđ Một Số Dạng Pt Vô Tỷ Và Cách Giải
  • Phương Trình Vi Phân Tuyến Tính Cấp 1, Bernoulli, Ricatti
  • Giải Toán 11 Bài 3. Một Số Phương Trình Lượng Giác Thường Gặp
  • Chỉ Cần 20 Bước Là Giải Được Bất Kỳ Khối Rubik Nào, Nhưng Mất 36 Năm Nghiên Cứu Ta Mới Tìm Ra Con Số 20 ‘thần Thánh’
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100